Genetic Testing for Hereditary and Multifactorial Conditions

Overview

This Coverage Policy addresses germline pathogenic or likely pathogenic variant genetic testing for hereditary and multifactorial conditions. Germline pathogenic or likely pathogenic variants occur in the egg and sperm cells; also known as the germ cells. These variants are inherited; that is, passed down in families by blood relatives.
Some conditions, such as sickle cell disease, are caused by a single germline pathogenic pathogenic variant. Other conditions, such as diabetes and heart disease, are more complex. These complex conditions are referred to as multifactorial conditions. Multifactorial conditions are also inherited, but may be caused by more than one germline pathogenic or likely pathogenic variant. Environmental factors, such as nutrition, exercise, weight, smoking, drinking alcohol and medication use may influence the observable characteristics of the condition.

Types of genetic testing used to identify germline pathogenic or likely pathogenic variants that cause hereditary and multifactorial conditions include single gene pathogenic or likely pathogenic variant testing, targeted analysis and multigene sequencing panels.

Coverage Policy

Many benefit plans limit coverage of laboratory tests, genetic counseling and genetic testing. Please refer to the applicable benefit plan language to determine benefit availability and terms, conditions and limitations of coverage for the services discussed in this Coverage Policy.

If coverage for laboratory tests, genetic counseling and genetic testing is available and disease- or condition-specific criteria for genetic testing or genetic counseling are not outlined in a related Cigna Coverage Policy, the following criteria apply.

For additional information regarding coverage for specific genetic tests please refer to the [Genetic Testing Collateral File](#).

Laboratory Testing

Medically Necessary

Laboratory testing, including genetic testing (proprietary or non-proprietary, individual test or panel) is considered medically necessary when ALL of the following criteria are met:

- The proposed test or each proposed test in a panel is Food and Drug Administration (FDA)-approved and/or performed in a Clinical Laboratory Improvement Amendments (CLIA)-accredited laboratory
- The proposed test or each proposed test in a panel is medically necessary for the diagnosis(es)/indication(s) listed.
- Results of the proposed test or each proposed test in a panel will directly impact clinical decision making

For an out-of-network request to be covered at an in-network benefit level, the proposed test or each proposed test in a panel must not be available from an in-network laboratory for the indication(s) or diagnoses listed.

Genetic Counseling

Medically Necessary

Pre- and post-test genetic counseling is recommended for any individual undergoing genetic testing for any indication.

Pre-and post-test genetic counseling is considered medically necessary for EITHER of the following:

- an individual undergoing genetic testing
- an individual who is a potential candidate for genetic testing
by ANY of the following:

- an independent Board-Certified or Board-Eligible Medical Geneticist
- an American Board of Medical Genetics or American Board of Genetic Counseling-certified Genetic Counselor not employed by a commercial genetic testing laboratory (Genetic counselors are not excluded if they are employed by or contracted with a laboratory that is part of an Integrated Health System which routinely delivers health care services beyond just the laboratory test itself).
- a genetic nurse credentialed as either a Genetic Clinical Nurse (GCN) or an Advanced Practice Nurse in Genetics (APNG) by either the Genetic Nursing Credentialing Commission (GNCC) or the American Nurses Credentialing Center (ANCC) who is not employed by a commercial genetic testing laboratory (Genetic nurses are not excluded if they are employed by or contracted with a laboratory that is part of an Integrated Health System which routinely delivers health care services beyond just the laboratory test.

Single Gene Genetic Testing for Germline Conditions

Medically Necessary

Single gene genetic testing for a heritable disorder is considered medically necessary when EITHER of the following criteria is met:

- Individual demonstrates signs/symptoms of a genetically-linked heritable disease.
- Individual or fetus has a direct risk factor (e.g., based on family history or pedigree analysis) for the development of a genetically-linked heritable disease.

And ALL of the following criteria are met:

- results will directly impact clinical decision-making and/or clinical outcome for the individual being tested
- testing methodology targeting DNA and/or RNA is considered scientifically valid for identification of a genetically-linked heritable disease and is the most accurate method unless technical limitations (e.g., poor quality sample) necessitate the need for alternate testing strategies
- if testing guidelines exist, the clinical scenario falls within those recommendations
- the clinical benefit of testing outweighs the potential risk of psychological or medical harm to the individual being tested

Single gene genetic testing is considered medically necessary when the above criteria are met for ALL of the following conditions including but not limited to:

<table>
<thead>
<tr>
<th>Alpha-1 antitrypsin disease</th>
<th>Niemann-Pick disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha and beta thalassemia</td>
<td>Nuclear mitochondrial genes</td>
</tr>
<tr>
<td>Canavan disease</td>
<td>Retinoblastoma</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td>Rett syndrome</td>
</tr>
<tr>
<td>DFNB1 nonsyndromic hearing loss and deafness</td>
<td>Sickle cell disease</td>
</tr>
<tr>
<td>Familial hypercholesterolemia (homozygous and heterozygous)</td>
<td>Taya-Sachs disease</td>
</tr>
<tr>
<td>Fragile X syndrome</td>
<td>Von Hippel-Lindau disease</td>
</tr>
<tr>
<td>Gaucher disease</td>
<td>21-hydroxylase deficiency</td>
</tr>
<tr>
<td>Muscular dystrophies (DMD, BMD, EDMD, DM1, DM2, SM)</td>
<td></td>
</tr>
</tbody>
</table>
Genetic testing with targeted mutation analysis for coagulation factor V Leiden (i.e., 1691G to A nucleotide variant) and coagulation factor II (i.e., 20210G to A nucleotide variant) is considered medically necessary for ANY of the following indications:

- pregnant woman who has a personal history of venous thromboembolism (VTE)
- in an individual with an unprovoked VTE (e.g., not associated with fracture, surgery, prolonged immobilization, cancer) when test results will impact long term medication management and at least one of the following:
 - concern for homozygous F2 or F5 or compound heterozygous F2/F5
 - high risk of recurrent VTE
- individual who has a first-degree relative* with factor V Leiden thrombophilia or F2 G2021A (prothrombin) thrombophilia and ONE of the following:
 - surgery is planned
 - pregnant
 - female who is considering estrogen contraception or hormone replacement therapy if results would influence decision to use estrogen

*A first-degree relative is defined as a blood relative with whom an individual shares approximately 50% of his/her genes, including the individual's parents, full siblings, and children.

Not Medically Necessary

Genetic testing for coagulation factor V Leiden (i.e., 1691G to A nucleotide variant) or prothrombin (i.e. 20210G to A nucleotide variant) for ANY of the following indications is considered not medically necessary (this list may not be all-inclusive):

- general population screening
- routine screening during pregnancy or prior to the use of oral contraceptives, hormone replacement therapy (HRT), or selective estrogen receptor modulators (SERMs)
- newborn testing, or routine testing in an asymptomatic child
- routine initial testing in an individual with arterial thrombosis
- testing of an asymptomatic first-degree* relative of an individual with proven symptomatic VTE and a proven coagulation factor V Leiden or prothrombin variant, for the purpose of considering primary prophylactic anticoagulation (except, as noted above, any female who is considering estrogen contraception or hormone replacement therapy if results would influence decision to use estrogen).
- neonate or child with asymptomatic central venous catheter-related thrombosis

Genetic testing is considered not medically necessary for the screening, diagnosis or management of ANY of the following conditions because there is insufficient evidence to demonstrate improved health outcomes:

- familial amyotrophic lateral sclerosis (FALS)
- genetic variants:
 - MTHFR
 - ACE
 - AGT
 - Apolipoprotein E (APOE)
 - APP
 - Presenilin 1 (PSEN1)
 - Presenilin 2 (PSEN2)
 - Prothrombin gene variant for the screening, diagnosis or management of coronary heart disease
 - Interleukin 6-174 variant
 - Chromosome 9 (9p21)
 - Kinesin-like protein 6
rs3798220 allele-lipoprotein A variant

Genetic testing or gene mapping in the general population is considered not medically necessary.

Multi-Gene Genetic Testing Panels

Medically Necessary

Genetic testing for hereditary conditions using a multigene sequencing panel is considered medically necessary when ALL of the following criteria are met:

• results will directly impact medical management of the individual being tested
• clinical presentation is consistent with a genetic etiology
• phenotype warrants testing of multiple genes and a relevant differential diagnosis list is documented
• test results may preclude the need for multiple and/or invasive procedures or tests, follow-up, or screening that would be recommended in the absence of panel testing

Genetic testing for multifactorial diseases using panels such as gene expression classifiers or polygenic risk scores is considered medically necessary when EITHER of the following conditions is met:

• individual demonstrates signs/symptoms of a multifactorial disease
• individual has a direct risk factor (e.g., based on family history or pedigree analysis) for the development of a multifactorial disease

And ALL of the following are met:

• the panel has been shown to improve clinical outcomes
• results will directly impact clinical decision-making and clinical outcome for the individual being tested
• presence of genetic variant(s) is highly predictive for the development of the multifactorial condition

Genetic testing for nonsyndromic forms of hearing loss using a multigene sequencing panel as recommended by the American College of Medical Genetics is considered medically necessary when ALL of the following criteria are met:

• individual lacks physical findings suggestive of a known genetic syndrome
• family history is suggestive of autosomal recessive inheritance or the individual lacks a family history of prelingual hearing loss
• medical and birth histories are not suggestive of an environmental (i.e., non-genetic) cause of hearing loss, including but not limited to:
 ➢ otitis media
 ➢ tympanic membrane perforation
 ➢ temporal bone fractures
 ➢ auditory tumors
 ➢ congenital rubella
 ➢ congenital syphilis
 ➢ congenital toxoplasmosis
 ➢ congenital malformations of the inner ear
 ➢ congenital cytomegalovirus (CMV) infection
 ➢ prematurity
 ➢ exposure to noise or ototoxic drugs (e.g., aminoglycosides and cyclophosphamides)

Not Medically Necessary
Genetic screening in the general population is considered not medically necessary.

Newborn Screening

Covered

Cigna covers newborn screening for genetic disorders (e.g., screening for metabolic, endocrine, hemoglobin and other disorders) performed in accordance with state mandates.

General Background

Laboratory Testing

Some general principles apply to reimbursement of all laboratory tests. The testing method being used must be scientifically validated for each indication for which the test or panel is being proposed. Due to the high complexity of genetic tests the proposed test or each proposed test in a panel must be Food and Drug Administration (FDA)-approved and/or performed in a Clinical Laboratory Improvement Amendments (CLIA)-accredited laboratory. There are several important advantages to a test being CLIA certified including the test having a higher degree of precision and performance by trained laboratory professionals. Tests performed in CLIA-accredited laboratories must meet regulatory CLIA standards. The results of each individual test or each test in a panel must be clinically useful for the diagnoses or indications for which the test is being performed. Further, outcomes must be meaningful, that is they must directly impact clinical decision making and result in improved outcomes for the individual being tested.

Genetic Counseling

Genetic counseling is defined as the process of helping individuals understand and adapt to the medical, psychological and familial indications of genetic contributions to disease. Genetic counseling services span the life cycle from preconception counseling to infertility evaluation, prenatal genetic screening and diagnosis, and include predisposition evaluation and genetic diagnosis (National Society of Genetic Counselors [NSGC]; 2010). Genetic counseling is recommended both pre-and post-genetic test to interpret family and medical histories to assess the chance of disease occurrence and recurrence, educate regarding inheritance, testing, management prevention and resources, and counsel to promote informed choices and adaptation to risk or condition (NSGC).

A variety of genetics professionals provide these services: Board-Certified or Board-Eligible Medical Geneticists, an American Board of Medical Genetics or American Board of Genetic Counseling-certified Genetic Counselor, and genetic nurses credentialed as either a Genetic Clinical Nurse (GCN) or an Advanced Practice Nurse in Genetics (APGN) by either the Genetic Nursing Credentialing Commission (GNCC) or the American Nurses Credentialing Center (ANCC). Individuals should not be employed by a commercial genetic testing laboratory, although counseling services by these individuals are not excluded if they are employed by or contracted with a laboratory that is part of an Integrated Health System which routinely delivers health care services beyond just the laboratory test itself.

Genetic Testing

Disease can result when there is an alteration or pathogenic variant in a DNA sequence which causes the cell to produce the wrong protein, or too much or too little of the correct protein. When the pathogenic variant occurs in an egg or sperm it is referred to as a germline variant. Germline gene variants are inherited; that is, passed down in families by blood relatives.
Some conditions, such as sickle cell disease, are caused by a single germline pathogenic variant. Other conditions, such as diabetes and heart disease, are more complex. These complex conditions are referred to as multifactorial conditions. Multifactorial conditions are also inherited, but may be caused by more than one germline pathogenic variant. The presence of a pathogenic variant(s) may increase an individual's risk of developing one of these conditions; however, a combination of genetic and environmental factors such as nutrition, exercise, weight, smoking, drinking alcohol and medication use may influence the observable characteristics of the condition.

Genetic testing involves the analysis of human deoxyribonucleic acid (DNA), ribonucleic acid (RNA), chromosomes, proteins, and certain metabolites in order to detect alterations or changes related to an inherited disorder. Types of genetic testing used to identify germline pathogenic variant(s) that cause hereditary and multifactorial conditions include single gene testing and targeted analysis.

The National Human Genome Research Institute Task Force on Genetic Testing ([NHGRI], 1995; Holtzman, 1997) recommended the following underlying principles to ensure the safety and effectiveness of genetic tests:

- The genotypes to be detected by a genetic test must be shown by scientifically valid methods to be associated with the occurrence of a disease, independently replicated and subject to peer review.
- Analytical sensitivity and specificity of a genetic test must be determined before it is made available in clinical practice.
- Data to establish the clinical validity of genetic tests (clinical sensitivity, specificity, and predictive value) must be collected under investigative protocols. In clinical validation, the study sample must be drawn from a group of subjects representative of the population for whom the test is intended. Formal validation for each intended use of a genetic test is needed.
- Before a genetic test can be generally accepted in clinical practice, data must be collected to demonstrate the benefits and risks that accrue from both positive and negative results.

The test must also have clinical utility. Clinical utility refers to the usefulness of the test to impact health outcomes and treatment.

Genetic testing may be used to aid in diagnosis or confirmation of a disorder in a symptomatic individual (i.e., diagnostic or confirmatory testing), to predict risk of future disease in an asymptomatic individual (i.e., predictive testing), to allow reproductive planning (i.e., reproductive carrier testing, prenatal testing of a fetus, preimplantation genetic diagnosis, and newborn screening. The scope of this policy includes diagnostic and confirmatory, single or multi-gene testing for hereditary and multifactorial conditions.

Single Gene Testing for Germline Conditions

Single gene germline genetic testing is frequently performed to diagnose or confirm the presence of a disease-causing pathogenic or likely pathogenic variant and may be appropriate if an individual demonstrates characteristics of a genetically-linked heritable disease or has a direct risk factor for the development of the specific disease in question. Diagnostic testing may also be performed to help determine the course of a disease or choice of treatment. Genetic testing for a number of genetically linked heritable conditions is supported by various professional society guidelines.

Coagulation Factor V Leiden (FVL) (i.e., 1691G to A nucleotide variant) and Coagulation Factor II (i.e., 20210G to A nucleotide variant) (F2) Prothrombin Thrombophilia: This Coverage Policy addresses confirmatory genetic testing for FVL and F2 prothrombin (i.e., 20210G to A nucleotide variant) thrombophilia. For discussion of genetic testing for these variants in recurrent pregnancy loss please see Cigna Coverage Policy 0514 Genetic Testing for Reproductive Carrier Screening and Prenatal Diagnosis.

Factor V Leiden (FVL) variant (i.e., Arg506Gln) is the most common heritable prothrombotic risk factor in the US, with the Leiden variant accounting for 90% to 95% of activated Protein C resistance. Both heterozygotes and homozygotes are at increased risk of occurrence or recurrence of venous thromboembolism (VTE). However, clinical expression of the FVL variant is variable and many individuals with the FVL allele never develop
thrombosis (GeneReviews, 2018). The risk of VTE among pregnant women who are heterozygous for FVL without a personal history of VTE or an affected first-degree relative with a thrombotic episode before age 50 years is less than 0.3%, while this risk increases to at least 10% among pregnant women with a personal or family history of venous thromboembolism (American College of Obstetricians and Gynecologists [ACOG], 2018).

The allele 20210G to 6 (c.*97G to A) is known to be associated with coagulation factor 2 (F2) prothrombin-related thrombophilia. Individuals heterozygous for this variant have an approximately two-to four-fold increased risk of VTE as compared to individuals without the variant. Individuals who are homozygous for the variant may have a more severe thrombophilia and/or an increased risk for thrombosis; however, the number of individuals who are homozygous for the variant is small and it is difficult to determine the risk of VTE in this population (American College of Medical Genetics [ACMG], 2006).

Clinical Utility for Genetic Testing: There is general consensus by a number of professional societies/organizations that testing for FVL and F2 is appropriate in selected individuals as an option to inform treatment. The decision to test should be based on clinical utility, that is, the likelihood that test results will impact clinical management (American College of Chest Physicians [ACCP], 2012; 2018ACMG, 2006; ACOG, 2018; Evaluation of Genomic Applications in Practice and Prevention Working Group [EGAPP], 2011; GeneReviews, 2018). Testing allows for prophylactic and/or ongoing clinical management including thromboprophylaxis and/or modification of risk factors. Persons for whom there is professional consensus regarding clinical utility for testing are:

- pregnant woman who has a personal history of venous thromboembolism (VTE)
- in an individual with an unprovoked VTE (e.g., not associated with fracture, surgery, prolonged immobilization, cancer) when test results will impact long term medication management and at least one of the following:
 - concern for homozygous F2 or F5 or compound heterozygous F2/F5
 - annual risk of recurrent VTE is estimated to be between 5% and 10%
- individual who has a first-degree relative* with factor V Leiden thrombophilia or F2 G2021A (prothrombin) thrombophilia and ONE of the following:
 - surgery is planned
 - pregnant
 - Female who is considering estrogen contraception or hormone replacement therapy if results would influence decision to use estrogen

Potential consequences of identifying a thrombophilic defect in a patient with venous thromboembolism (VTE) include prolonging the anticoagulant therapy beyond three-six months, or prescribing a more aggressive thromboprophylaxis in at-risk situations such as surgery, pregnancy or prolonged immobility (Roldan, 2009).

The EGAPP (2011) notes for asymptomatic family members of index cases, no prophylaxis trials have been reported; therefore, there is no direct evidence of particular benefit to family members. Potential net harm is possible if primary prophylaxis is administered to asymptomatic family members with one or more variants, because the absolute risk of an initial venous thromboembolism (VTE) event is low, and the risk of anticoagulant-induced hemorrhage is relatively high. Although technically possible, prenatal testing of a fetus and preimplantation genetic diagnosis (PGD) to determine the presence of these variants is rarely performed. Presence of the variant only increases the relative risk for thrombophilia and is not predictive of a thrombotic event (GHR, 2018).

Federal Drug Administration (FDA): The FDA has given 510K approval to several deoxyribonucleic acid (DNA)-based laboratory tests designed to test for FV Leiden (FVL) including the INFINITI System Assay (AutoGenomics, Inc., 2007, Carlsbad, CA) and the LightCycler (PCR) Instrument Version 1.2 (Roche Applied Sciences, 2003, Indianapolis, IN).

Literature Review
Targeted genetic testing to confirm diagnosis of coagulation factor V Leiden (i.e., FVL, 1691G to A nucleotide variant) and prothrombin (i.e., F2 20210G to A nucleotide variant) is appropriate in selected populations. Professional society support for testing is available in the form of published guidelines.

No randomized controlled trials have confirmed that early identification of thrombophilia affects the risk for recurrent VTE. On behalf of the AHRQ, Segal et al. (2009) published an evidence report/technology assessment of 124 studies to determine whether FVL testing alone, or in combination with prothrombin G20210A leads to improved clinical outcomes in adults with a personal history of VTE, or in adult family members of variant-positive individuals. The authors reported that there was no direct evidence in the studies that addressed this primary objective. There was moderate evidence to support the conclusion that neither harms nor benefits of testing have been demonstrated conclusively. A single study supported the hypothesis that clinicians might change management based on test results. The authors concluded that the test results have variable clinical validity for predicting VTE in these populations and have only weak clinical utility.

Marchiori et al. (2007) conducted a systematic review of prospective studies to assess the risk of recurrent VTE associated with heterozygous carriage of FVL and prothrombin G20210A (PTM) variants. The studies included a total of 3203 patients, 557 of whom were heterozygous carriers of FV Leiden (FVL). Eleven studies were included in the review, ten (seven prospective cohort studies and three randomized trials) of which examined the risk of recurrent venous thromboembolism (VTE) in heterozygous carriers of FVL. Recurrent thromboembolism occurred in 114 of the 557 heterozygous FVL carriers (20.5%) and in 382 of the 2646 non-carriers (14.4%). This data suggests that heterozygous carriers of the FVL variant may have an increased risk of recurrent VTE when compared to non-carriers.

Wu et al. (2006) performed a systematic review and meta-analysis (i.e., Thrombosis: Risk and Economic Assessment of Thrombophilia Screening [TREATS]) to establish the risk of clinical complication associated with thrombophilia in women who used oral estrogen therapy, women who were pregnant, and individuals who had undergone major orthopedic surgery. The study also measured the relative cost-effectiveness in universal and selective, history-based screening for thrombophilia. Eighty-one studies were included in the review. The highest risk of VTE in individuals who used oral contraception and hormone replacement therapy was in women with FVL (odds ratio [OR] 15.62 and 13.16 respectively). The meta-analysis also suggested that during pregnancy, women with FVL were at a significantly higher risk to develop venous thromboembolism (VTE) and to experience recurrent pregnancy loss (OR 2.06) or late pregnancy loss (2.06). The odds ratio for the association between FVL and postoperative VTE following hip or knee replacement surgery was 1.86. The authors concluded that universal thrombophilia screening is not supported by the evidence.

Professional Society/Organizations

For a summary of professional society recommendations/guidelines regarding genetic testing for coagulation Factor V Leiden and Factor II (i.e., 20210G to A nucleotide variant) please click here.

The American Board of Internal Medicine’s (ABIM) Foundation Choosing Wisely® Initiative (2018):

Regarding testing for thromboembolism, the American Society of Hematology notes “Don’t test for thrombophilia in adult patients with venous thromboembolism (VTE) occurring in the setting of major transient risk factors (surgery, trauma or prolonged immobility”).

Use Outside of the US: A number of professional societies/organizations support genetic testing for coagulation Factor V Leiden gene variant 1691G>A) and F2 gene variant 20210G to A nucleotide change in selected subsets.

Amyotrophic Lateral Sclerosis (ALS)

No one test can provide a definitive diagnosis of ALS; a reliable biochemical abnormality shared by all patients with the disease has not been identified. Diagnosis is made by the presence of characteristic clinical features, electrodiagnostic testing (e.g., electromyography, nerve conduction velocity), and histologic findings as well as the exclusion of other conditions with related symptoms.

A number of genetic variants, including those of the superoxide dismutase 1 (SOD1), TAR DNA binding protein (TARDP or TDP-43), FUS, and C9orf72 genes have been implicated in familial ALS. About 10%–20% of all...
familial cases result from a specific genetic pathogenic variant of SOD1, which is inherited in an autosomal dominant manner. Greater than 100 pathogenic or likely variants have been identified. Although molecular genetic testing is available for several genes associated with familial ALS, including SOD1, the presence of these pathogenic or likely pathogenic variants may not provide prognostic information; interpretation of the significance of a variant regarding disease severity and progression depends on the specific variant because of the wide variability in genotype/phenotype correlations. Additionally, the absence of a pathogenic or likely pathogenic variant in a family where one has not been identified is not informative as it does not rule out familial ALS caused by other pathogenic or likely pathogenic variants.

Literature Review

Several genome-wide association indicate that no definitive or common highly penetrant allele causes sporadic or familial ALS. Additionally, a number of gene variants initially thought to be causative only for familial ALS, such as SOD1, TARDBP (TDP-43) and FUS have been identified in individuals diagnosed with sporadic ALS (Belzil, 2009; GeneReviews, 2019; Wijeseker, 2009; Paubel, 2008). These data suggest the clinical utility of genetic testing for these variants is not firmly established.

There is insufficient evidence in the published, peer-reviewed scientific literature to support the clinical utility of genetic testing for the screening, diagnosis, or management of familial ALS. The identification of a pathogenic or likely pathogenic variant does not diagnose familial ALS, and does not impact treatment or health outcomes. Data are also lacking regarding the utility of prenatal or preconception carrier testing, prenatal testing of the fetus, or its use in preimplantation genetic diagnosis (PGD).

Professional Society/Organizations

For a summary of professional society recommendations/guidelines regarding genetic testing for ALS please click here.

Methylenetetrahydrofolate Reductase (NAD(P)H) (MTHFR) Gene Variants

At least 40 variants in the MTHFR gene have been identified in individuals with homocystinuria (GHR, 2015). Polymorphisms in the MTHFR gene have been associated with an increased risk of homocystinuria and neural tube defects, such as anencephaly and spinal bifida, and studied as a possible risk factor for a number of other conditions such as heart disease, stroke, preeclampsia, glaucoma, cleft palate, and certain psychiatric conditions. Increased levels of homocysteine have also been associated with an increased risk of thromboembolism (GHR, 2018). Although MTHFR has been associated with increased risk of homocystinuria; genetic testing is not indicated because these variants are not associated with thromboembolism (Raffini, 2011; Dietcher, 2009).

MTHFR variants have also been associated with an increased risk of neural tube defects, such as anencephaly or spinal bifida. The 677C>T variant is the most commonly studied (GHR, 2015). This involves a change in a single deoxyribonucleic acid (DNA) nucleotide in the MTHFR gene, which produces a form of MTHFR that has reduced activity at higher temperatures (i.e., thermolabile). Individuals with the thermolabile form of the enzyme have increased blood levels of homocysteine (GHR, 2018).

Literature Review

Although there are a number of observational studies in the published peer-reviewed scientific literature regarding the association of MTHFR variants and increased risk of homocystinuria, neural tube defects and other conditions, randomized control data are limited. Evidence to demonstrate the impact of genotyping on improved health outcomes, including disease management, is also limited.

Several variants of the MTHFR gene have been associated with increased risk of developing a number of conditions; however, its role in these conditions has not been established (Genetics Home Reference [GHR], 2018; Raffini, 2011; Dietcher, 2009). There is insufficient evidence in the published peer-reviewed scientific literature to determine the clinical utility of genetic testing and its impact on net health outcomes. Professional society consensus support for MTHFR genotyping is limited. At this time the role of genetic testing for MTHFR has not been established.
Tsai et al. (2009) reported results of a longitudinal cohort analysis of participants (n=1434) of the CARDIA study. DNA was extracted from the peripheral leukocytes of blood collected from each participant. MTHFR 677C.T genotype was determined using selective amplification. The mean of serum B vitamins and tHcy concentrations and the prevalence of folate deficiency and moderate hyperhomocysteinemia were compared in 844 Caucasian and 587 African American participants before folic acid fortification (year 0 and year 7) and after fortification (year 15). Mandatory folic acid fortification as initiated by the U.S. government in 1998 improved the nutritional status of folate in both Caucasians and African Americans, with an approximate three-fold increase in folate concentrations at year 15 compared with year 0. The authors used the sensitivity and specificity of MTHFR 677C.T genotyping to predict elevated tHcy concentrations using various tHcy cutoffs to define hyperhomocysteinemia. The authors concluded that after folic acid fortification in the US, measurement of tHcy rather than genotyping of MTHFR 677TT should be used as the primary assay for the diagnosis and monitoring of moderate hyperhomocysteinemia.

Professional Societies/Organizations
For a summary of professional society recommendations/guidelines regarding genetic testing for MTHFR please click [here](#).

ACE and AGT Gene Variants

ACE Gene
The ACE gene (i.e., angiotensin I converting enzyme [peptidyl-dipeptidase A] 1) is part of the rennin-angiotensin system (GHR, 2018). ACE is a relatively nonspecific peptidase and one of the most polymorphic genes, thought to affect a number of physiologic processes including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and immune response. Specifically, variants in the ACE gene have been identified as the most common cause of renal tubular dysgenesis; at least 33 variants have been found in affected individuals. A variation in the ACE gene, called the ACE I (insertion)/D (deletion) type, is a focus of ongoing research. Individuals may have two I alleles (II), two D alleles (DD), or one of each (ID). The DD type has been associated with increased levels of angiotensin-converting enzyme compared to the other types. Researchers propose that individuals with the DD type have an increased risk of stroke. It is also thought that individuals with this type who have diabetes mellitus have an increased risk of nephropathy. The contribution of other genetic and environmental influences on these risk factors is unknown (Online Mendelian Inheritance in Man [OMIN], 2018).

Angiotensinogen (AGT) Gene Variants
Individuals with an inherited variant in the AGT gene are more likely to become hypertensive and to experience more severe forms of the disease earlier in life. AGT polymorphism may be associated with increased risk of cardiovascular disease and increased responsiveness to angiotensin converting enzyme (ACE) inhibitor therapy, salt restriction and weight loss. Analysis of the gene may have potential to help individualize therapy by determining the patient’s responsiveness to certain types of antihypertensive interventions. Evidence in the peer-reviewed, published scientific literature is insufficient to support the clinical utility of this testing and does not support that the detection of AGT leads to improvement of clinical outcomes in patient management.

The AGTR1 gene (i.e., angiotensin II receptor type 1 [AT1 receptor]) is also part of the rennin-angiotensin system. Like variants associated with the ACE gene, AGTR1 gene variations have also been linked to renal tubular dysgenesis. Other variants, including the 1166A>C variant have been associated with several conditions including an increased risk for the development of essential hypertension, heart disease, and nephropathy (GHR, 2018).

Although it has been suggested that the presence of ACE and AGTR1 gene variants increase risk and susceptibility for a number of conditions the influence of environmental factors and other variables on the development of these conditions is unknown. There are limited data in the published peer-reviewed scientific literature to inform improved health outcomes using the results of this testing. Established strategies for genetic testing of this gene are lacking. Genetic testing for ACE and AGTR1 gene variants remains a continued focus of research; however, the role of such testing to inform clinical practice and improve health outcomes has not yet been established.
Literature Review: Randomized controlled trial data to inform on the ability of genetic testing to improve health outcomes are lacking. Evidence in the published peer-reviewed scientific literature regarding genetic testing for ACE and AGTR1 gene variants is primarily limited to association studies and uncontrolled trials related to conditions for which increased risk has been proposed. There are scarce data regarding testing strategies and the outcomes of genetic testing on the diagnosis and management of these conditions.

Apolipoprotein E (APOE) Gene Variants
Genetic testing for apolipoprotein-E epsilon (APOE) testing has been proposed as a means to provide additional risk information for those patients currently identified as low- or intermediate-risk for cardiovascular disease by standard lipoprotein test and risk factor assessment. APOE controls the metabolism of the highly atherogenic apolipoprotein B (apo B) containing lipoproteins. It is a protein constituent of VLDL and chylomicrons. The APOE gene provides instructions for making Apo E; Apo E binds to the cell surface receptors to form molecules called lipoproteins. However, there is no uniform standard for analyzing the relationship of APOE genotypes or phenotypes to cardiovascular disease (CVD) risk. At this time genotype-phenotype correlations are incompletely understood (GeneReviews, 2014).

Genetic testing for APOE has also been proposed as a means to diagnose or predict susceptibility to early- and late-onset AD. At least three different alleles of APOE epsilon have been identified: APOE epsilon-2 (APOE e2), APOE epsilon-3 (APOE e3) and APOE epsilon-4 (APOE e4). APOE is a susceptibility polymorphism; the presence of one or two e4 alleles increases the risk but does not guarantee that someone will develop AD (Bird, 2015). Neuropathologic findings of beta-amyloid plaques and intraneuronal neurofibrillary tangles on autopsy examination remain the gold standard for diagnosis of AD (Bird, 2015). Clinical diagnosis prior to autopsy confirmation is made by use of diagnostic testing. Recommendations by the National Institute of Neurological and Communicative Diseases and Stroke and the Alzheimer’s Disease and Related Disorders Association ([NINCDS-ADRDA]) criteria were published by McKhann et al. (2011), on behalf of the National Institute on Aging and the Alzheimer’s Association. These criteria correctly diagnose the disease 80%-90% of the time.

The role of APOE in late-onset AD is a topic of research interest. Genotyping for the APOE e4 variant is clinically available and results in specificity estimates ranging from 75% to 81% (Genetics Home Reference [GHR], 2014; American College of Medical Genetics [ACMG], 1995; Corder, 1993). This genotype is found in many elderly persons without dementia and about 42% of persons with late-onset Alzheimer’s disease (AD) do not have an apolipoprotein-E (APOE) epsilon-4 allele. The absence of this allele does not rule out the diagnosis of Alzheimer’s disease, however (Mayeux, 1998). The influence of the APOE genotype on AD risk may be also modulated by cholesterol level, alpha-1 -antichymotrypsin genotype, and very low-density lipoprotein receptor gene (ACMG, 1995). According to Genetics Home Reference (GHR, 2014) association of the APOE e4 allele with AD is significant; however, APOE genotyping is neither fully specific nor sensitive. Additional genes and loci under investigation include SORL-1, A2M, GST01 and GST02, GAB2, CALHM1,TOMM40, Clusterin, CR1, and PICALM (GHR, 2014; 2015; Blacker, 2002).

There is insufficient evidence in the peer-reviewed, scientific literature to support the use of APOE testing for the screening, diagnosis or management of cardiovascular disease. Neuropathological testing remains the gold standard for diagnosis of Alzheimer disease (AD). APOE genotyping does not reduce the risk of developing Alzheimer’s disease, change the clinical treatment, or substantially modify disease progression in individuals with Alzheimer’s disease.

Literature Review
The Agency for Healthcare Research and Quality ([AHRQ], 2010) identified 15 cohort studies involving 8509 subjects that examined the association between APOE and the risk of cognitive decline. Various studies reported that APOE epsilon-4 (e4) was associated with greater decline on some, but not all, cognitive measures. Presence of an APOEe4 allele was not, however, significantly different in those who maintained cognitive performance compared to those with minor declines.

Tsuang et al. (1999) prospectively evaluated APOE testing for AD in a community-based case series of 970 persons with no previous diagnosis of dementia. Clinical diagnosis yielded a sensitivity of 84%, specificity of 50%, and positive and negative predictive values of 81% and 56%, respectively. Neuropathologic AD was confirmed in 94 of 132 patients, with a prevalence of 71%.The presence of an APOE epsilon-4 allele was
associated with an estimated sensitivity of 59%, specificity of 71%, and positive and negative predictive values of 83% and 41%, respectively. The authors noted that findings do not support the use of APOE genotyping alone in the diagnosis of AD in the general medical community. In a neuropathologically confirmed series, the addition of APOE testing increased the positive predictive value of a diagnosis of AD from 90% to 94%. In those patients with a clinical diagnosis of non-Alzheimer’s dementia the absence of an APOE e4 allele increased the negative predictive value from 64% to 72% (Waldemar, 2007).

Professional Societies/Organizations
For a summary of professional society recommendations/guidelines regarding genetic testing for APOE gene variants please click here.

Amyloid Precursor Protein (APP), Protein Presenilin-1 (PSEN1) and Protein Presenilin 2 (PSEN2)
Early onset familial Alzheimer disease (EOFAD) is diagnosed in families with multiple affected individuals with mean age of onset before 65 years and/or with a documented pathogenic variant in one of the genes known to be associated with this disorder. Although clinically indistinguishable by phenotype, three subtypes have been recognized, based on differences in the causative gene variant: Alzheimer disease type 1 (AD1), caused by pathogenic variant of APP (10%-15% of EOFAD); Alzheimer disease type 3 (AD3), caused by pathogenic variant of PSEN1, (30%-70% of EOFAD); and Alzheimer disease type 4 (AD4), caused by pathogenic variant of PSEN2 (<5% of EOFAD). Kindreds with autosomal dominant EOFAD with no identifiable pathogenic variants in PSEN1, PSEN2, or APP have been described; thus, it is likely that variants in additional genes are causative (Bird, 2015).

Genetic testing of at-risk asymptomatic adults for early-onset familial Alzheimer’s disease is clinically available for PSEN1, PSEN2 and APP variants. However, genetic testing is not helpful in predicting age of onset, severity, type of symptoms, or rate of progression in asymptomatic individuals. At this time genotyping for PSEN1, PSEN2, and APP variants does not reduce the risk of developing Alzheimer’s disease, change the clinical treatment, or substantially modify disease progression in individuals with early-onset disease.

The clinical utility of genetic testing for APP, PSEN1 and PSEN2 to diagnose or manage early-onset familial Alzheimer disease in at-risk individuals or as a screening tool in the general population has not yet been established. At this time there is insufficient evidence in the published, peer-review scientific literature to demonstrate improved health outcomes with such testing.

Professional Societies/Organizations
For a summary of professional society recommendations/guidelines regarding genetic testing for APP, PSEN1 and PSEN2 gene variants please click here.

Cardiac Disease-Risk Factors
Prothrombin Gene Variants: Genetic testing for prothrombin gene variants has been proposed as a means to screen, diagnose and manage coronary heart disease. Thrombosis has been implicated as a risk factor for cardiovascular disease. However, there is insufficient evidence in the published, peer-reviewed scientific literature to establish a role of genetic testing for this indication.

Interleukin 6–174 Variant: Interleukin 6 is an inflammatory cytokine that is believed to play a role in the acute phase response and inflammatory cascade similar to C-reactive protein. One polymorphism, −174, has been reported to be of specific importance (Lieb, et al., 2004). However, evidence regarding the relationship between interleukin 6–174 and cardiovascular disease has not been consistently demonstrated in the peer-reviewed, published scientific literature. The results of some studies show an association between plasma levels and cardiovascular disease (Reichert, 2016; Bermudez, et al., 2002; Ridker, et al., 2000) and, in other studies, authors have reported it is not a suitable marker for coronary heart disease and that significant associations have not been found (Sukhija, et al., 2007; Sie, et al., 2006; Lieb at al., 2004). The limitations of the overall body of published evidence preclude the ability to draw strong conclusions on the clinical utility of interleukin 6–174 testing at this time.

Kinesin-like protein 6 (KIF6): Kinesin-like protein 6 is a protein involved in intracellular transport expressed in many tissues and cell types. Theoretically, variants of KIF6 (719Arg allele) may be a risk factor associated with CVD, in particular with myocardial infarction. While the role of KIF6 in CVD is not clearly established in the peer-
reviewed scientific literature, there are a few studies that support an association with CVD (Shiffman, et al., 2008a; Bare, et al., 2007; Shiffman, et al., 2008b; Iakoubova, et al., 2008). Furthermore, preliminary evidence has shown that high dose statin therapy compared with standard dose reduced the risk of death or major cardiovascular events in patients who were carriers of the gene (Iakoubova, et al., 2008). However, further studies are needed to clearly define the functional effect of the gene, the affect KIF6 has on CVD, and to determine how testing impacts medical management strategies and improves clinical outcomes.

Chromosome 9 Polymorphism 9p21: Genomic profiling (evaluating multiple genes) has recently been evaluated as a method of improving cardiac risk determination compared to traditional cardiac risk factors. The Genomic Applications in Practice and Prevention (EGAPP) Working Group (launched by the Centers for Disease Control and Prevention) sought indirect evidence to support that genomic profiling has an impact on cardiac risk estimation and that improvement in risk determination would result in management changes that improved clinical outcomes. EGAPP acknowledged direct evidence is lacking. Overall, 29 gene candidates were evaluated with 58 different gene variant associations. Only one marker, chromosome 9p21 SNPs (single nucleotide polymorphisms), had strong credibility; other combinations were moderate or weak (Palomaki, et al., 2010a). Based on the published recommendations (EGAPP, 2010) there was insufficient evidence to support testing in the general population for the 9p21 variant or for any of the 57 other variants found in 28 genes. As a result, the magnitude of health benefit for these was tests were found to be insignificant. The extent to which genomic profiling alters cardiac risk estimation remains unknown and genomic testing cannot be recommended until evidence supports improved clinical outcomes.

rs3798220 allele-lipoprotein A variant: Genetic variants of the Lp(a) gene are being investigated to evaluate the influence of the variants on Lp(a) levels and associated cardiac risk. One single nucleotide polymorphism (LPA rs3798220) has been identified in the LPA gene as being associated with both elevated levels of lipoprotein(a) and an increased risk of thrombosis. Theoretically patients with a positive test for the LPA genetic variant rs3798220 may derive more benefit from the anti-thrombotic properties of aspirin due to the increased risk for thrombosis, thereby reducing cardiac disease risk. As a result, testing for the rs3798220 variant has been proposed as a method of stratifying benefit from aspirin treatment.

The U.S. Preventive Services Task Force (USPSTF) guidelines do support aspirin therapy for a specific subset of individuals for reducing the risk of stroke or myocardial infarction. Aspirin therapy is a well-established but may be associated with gastrointestinal bleeding. Authors contend that testing for the LPA genetic variant may help to better define the risk/benefit ratio of aspirin therapy when the Lp(a) level is elevated.

Evidence in the published, peer-reviewed scientific literature evaluating the association of lipoprotein A variant and elevated Lp(a) is in early stages with mixed outcomes being reported (Shiffman, et al., 2008a; Shiffman, et al., 2008b; Clarke, et al., 2009; Chasman, et al., 2009; Hopewell, et al., 2011; Anderson, et al., 2013; Koch, et al., 2013; Li, et al., 2014). Currently the evidence does not lend support that testing offers any additional prognostic value compared to Lp(a).

Gene Expression Profiling for Cardiovascular Disease Risk: Gene expression is a process by which a gene's coded information is translated into the structures present and operating in the cell and has been investigated as a diagnostic tool for evaluating individuals with cardiovascular disease.

Literature Review

Although there are some data in the published, peer-reviewed scientific literature evaluating risk factors as a method of assessing cardiovascular disease, the added value beyond that associated with traditional testing has not been firmly established. Consensus support from professional societies/organizations in the form of published guidelines is lacking. The impact of genetic testing on meaningful clinical outcomes such as morbidity and mortality has not yet been clearly defined.

Evidence in the published peer-reviewed scientific literature evaluating gene expression for determining cardiovascular disease risk (e.g., Corus CAD) is limited to prospective validation studies and case control studies (Filsssoof, 2015; Ladapo, 2015; Daniels, 2014; Vargas 2013; Wingrove, et al., 2008; Rosenberg, et al., 2010; Elashoff, et al., 2011; Rosenberg, et al., 2012; Lansky, et al., 2012; McPherson, et al., 2013; Thomas, et al., 2013). Wingrove et al. (2008) and Elashoff, et al. (2011) evaluated genes associated with CAD as part of the
development of the gene expression assay algorithm for assessing CAD in nondiabetic patients. Rosenberg and colleagues published results of the PREDICT trial (Personalized Risk Evaluation and Diagnosis in the Coronary Tree) in 2010, a trial designed to validate the diagnostic accuracy of gene expression, and reported sensitivity and specificity were 85% and 43% respectively. The authors noted the algorithm score was moderately correlated with maximum percent stenosis (p<0.001).

As a follow-up to the 2010 trial, Rosenberg and associates reported on the relation of gene expression testing to major adverse cardiovascular events and revascularization procedures. The study group involved an extended cohort of the PREDICT trial that included the validation cohort (n=526) as well as the algorithm development cohort (n=640). Subjects underwent angiography and gene expression testing and were followed for one year post angiography (n=1116). The study endpoint was major adverse cardiac event or procedures. At one year the endpoint rate was 25% overall for all subjects. The gene expression score (GES) was associated with composite overall endpoint of both major events and procedures at one year (p<0.001) and at 12 months the sensitivity and specificity were 86% and 41% respectively. Elevated GES scores (>15) trended towards an increased rate of adverse events and procedures. The authors noted study limitations included limited follow-up period post index angiography and exclusion of individuals with high risk unstable angina and low risk asymptomatic subjects as noted by the authors. Further studies with larger cohorts and evaluation of longer term outcomes are needed.

Thomas and associates (2013) reported the results of a prospective, multicenter, double blind trial evaluating gene expression as a method to assess obstructive CAD (n=431) (COMPASS study). The study population consisted of a cohort of subjects referred for diagnostic myocardial perfusion imaging (MPI) stress testing with angina or angina equivalent symptoms. The subjects had blood samples for gene expression obtained prior to MPI and based on MPI results were referred for either invasive coronary angiography or CT angiography. The subjects were followed for 6 months with a study end point of a major adverse cardiac event. Angiography results were compared to GES and MPI results. GES was significantly correlated with maximum percent stenosis (≥ 50). Negative predictive value, sensitivity and specificity were reported at 96%, 89% and 52%, respectively. In the authors opinion gene expression scoring was more predictive of obstructive CAD compared to MPI and other clinical factors. Limitations noted by the authors included potentially lower disease prevalence in the subjects due to inclusion/exclusion criteria, and lack of comparison of GES scores to other noninvasive imaging modalities.

In another clinical trial, McPherson et al. (2013) evaluated the impact of gene expression testing on disease management by a group of cardiology specialists. The results of this study (n=88) demonstrated that subjects with low gene expression scores (i.e., ≤ 15) were more likely to have a decrease in the intensity of diagnostic testing. In addition, patients with elevated levels were more likely to undergo additional testing for the evaluation of obstructive CAD. Limitations of this study include small sample population, evaluation of short term outcomes (6 months) and inclusion criteria of low risk individuals.

Herman et al. (2013) published the results of a prospective clinical trial (n=261) to evaluate the impact of GES testing on reduction of diagnostic uncertainty in the evaluation of subjects presenting with symptoms suggestive of obstructive CAD. The trial is referred to as the “Primary Care Providers Use of a Gene Expression Test in Coronary Artery Disease Diagnosis (IMPACT-PCP)” trial. Subjects were nondiabetic patients presenting with stable, nonacute typical and atypical symptoms of obstructive CAD. Ten subjects were excluded, primarily due to GES exclusion criteria. Preliminary clinical decisions, without GES results were made by the primary care physician and compared to final decisions made with the GES results. Primary outcomes included the change in patient management between preliminary and final decisions; secondary outcomes included assessment of the pattern of change for each patient, including the effect the change had on patient outcomes. The average pretest probability of obstructive CAD was 28±17%. There was a change in diagnostic plan in 145 subjects with 93 having a reduction in intensity of testing (P<.001). GES was not associated with untoward outcomes within the first 30 days follow-up; one major adverse cardiac event occurred within the 30 day period. GES testing in this study group allowed physicians to reclassify subjects for subsequent testing. Limitations of the study included sample population of nondiabetic subjects, and short-term followup of 30 days for monitoring of adverse events.

Ladapo et al. (2014) published the results of the REGISTRY trial which was a prospective, multicenter observation registry of data collected regarding utilization of health care services for subjects at seven primary care sites who underwent GES testing. Following GES testing medical assessments of the subjects were
followed for 45 days to determine how clinicians managed the subjects (e.g., cardiology referrals, cardiac stress
tests, angiography). Primary outcomes included the 45 day assessment outcomes, in addition to 6 month follow
up for evaluating major cardiac adverse events. The GES showed statistically significant relationships with
patterns of cardiac referrals; subjects with a low GES had 94% decreased odds of referral versus subjects with
an elevated GES. The overall major adverse cardiac event rate was 5/339 during the follow-up period. Ladapo
and colleagues concluded GES had an effect on patient management that was clinically relevant and the test
was safe as evidenced by a low major cardiac adverse cardiac event rate. The study is limited by lack of a
control group.

Professional Societies/Organizations

For a summary of professional society recommendations/guidelines regarding genetic testing for cardiac
disease-risk factors please click [here](#).

Multi-Gene Genetic Testing Panels (Germline Genetic Testing Panels)

Overall, the clinical utility of genetic testing is dependent upon the particular phenotype or observable
characteristics of a disease, and set of genes being tested. Similar to genetic testing for single genes, smaller,
more targeted panels to assess for a particular disorder may have clinical utility when used to aid in diagnosis of
heterogeneous genetic conditions. Results of testing should directly impact clinical management and improve
clinical outcomes for the individual being tested as with single gene testing. Test results may preclude the need
for additional tests, follow-up or screening that would be recommended if panel testing is not performed.
Additional advantages of panel testing include possible time and cost effectiveness as compared with the time
and cost of analyzing each gene separately. The role of panel testing has not been established when treatment
is largely supportive and/or results of testing will not result in a direct change in clinical management of the
individual or lead to an improvement in clinical outcomes.

Most multi-gene panels use next-generation sequencing methodology, but some still use Sanger sequencing.
Next generation sequencing technology allows large amounts DNA to be sequenced rapidly at a much lower
price than prior sequencing methods. The evolution of this technology has spurred the development of tests that
sequence multiple genes simultaneously. Such testing is expected to enable widespread evaluation of patients’
genomes in the clinical setting (Johansen Taber, 2014). Multi-gene test panels range from small to large
numbers of genes. For testing of multifactorial conditions, testing panels may include gene expression classifier
and polygenic risk score tests.

Multi-Gene Panel Testing for Non-Syndromic Hearing Loss

More than 50% of prelingual deafness is genetic, with most of these cases being autosomal recessive and
nonsyndromic. It has been noted that the reduction in the incidence of acquired causes of hearing loss has
resulted in hereditary hearing loss accounting for a greater proportion of hearing loss in the general population
(Hone and Smith, 2003).

Genetic forms are diagnosed by otologic, audiological, ancillary (i.e., computed tomography [CT] examination of
the temporal bone), and DNA-based testing, as well as by physical examination and family history. Molecular
testing of gene GJB2 (which encodes the protein connexin 26) and GJB6 should be considered in the evaluation
of individuals with congenital nonsyndromic sensorineural hearing loss consistent with autosomal recessive
inheritance or in families with apparent “pseudodominant” inheritance of DFNB1 (Smith, 2014). Approximately
98% of individuals with DFNB1 have two identifiable GJB2 variants. Approximately 2% of individuals with DFNB1
have one identifiable GJB2 variant and one of two large deletions that include a portion of GJB6. Diagnosis
depends upon molecular genetic testing to identify deafness-causing variants in the genes GJB2 and GJB6.
GJB2 gene is the major gene responsible for nonsyndromic, recessive deafness and variants in GJB2 gene and
GJB6 gene together account for 50% of autosomal recessive nonsyndromic hearing loss.

Multi-gene testing or screening with a panel of genetic tests has been proposed to test for many causes of
hearing loss. The extreme genetic heterogeneity and the frequent lack of phenotypic variability make genetic
diagnosis of non-syndromic hearing loss (NSHL) difficult using single-gene screening techniques—for this
reason, multi-gene screening panels for NSHL have been developed. For some syndromic forms of hearing loss,
such as Usher syndrome or Pendred syndrome, the nonauditory features can be subtle, especially in early childhood and certain environmental or nongenetic factors play a major etiologic role in hearing loss.

Professional Societies/Organizations

For a summary of professional society recommendations/guidelines regarding genetic testing for multi-gene panel testing for non-syndromic hearing loss please click [here](#).

Newborn Screening

Newborn screening is performed to limit the morbidity and mortality attributable to selected inherited diseases (American Academy of Pediatrics ([AAP], 2013). Newborn screening programs are organized through state governments and are generally mandated. According to the March of Dimes (2015), screening is available for disorders in which accurate diagnosis and early treatment of the disorder can improve health outcomes. Some genetic screening tests are not deoxyribonucleic acid (DNA) - or chromosome-based tests but use biochemical markers or phenotypic features.

AAP guidelines (2013) note the AAP and American College of Medical Genetics (ACMG) do not support routine carrier testing in minors when such testing does not provide health benefits in childhood.

Use Outside of the US

See Appendix A for relevant statements.

Medicare Coverage Determinations

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Policy Name/Number</th>
<th>Revision Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCD</td>
<td>National Coverage Determination (NCD) for Next Generation Sequencing (NGS) (90.2)</td>
<td>11/20/2020</td>
</tr>
<tr>
<td>LCD</td>
<td>MolDX: Corus® CAD Assay</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>MolDX: Envisia, Veracyte, Idiopathic Pulmonary Fibrosis Diagnostic Test</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>MolDX: Genetic Testing for Hypercoagulability / Thrombophilia (Factor V Leiden, Factor II Prothrombin, and MTHFR)</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>MolDX: HLA-DQB1*06:02 Testing for Narcolepsy</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>MolDX: Molecular Diagnostic Tests (MDT)</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>MolDX: Molecular RBC Phenotyping</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>MolDX: Percepta® Bronchial Genomic Classifier</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>MolDX: Repeat Germline Testing</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>Molecular Pathology Procedures for Human Leukocyte Antigen (HLA) Typing</td>
<td>1/08/2019</td>
</tr>
</tbody>
</table>

Note: Please review the current Medicare Policy for the most up-to-date information

Appendix A: Professional Society/Organization Recommendations/Guidelines

Factor V Leiden and Coagulation Factor II (i.e., 20210G>A variant)

American College of Chest Physicians (ACCP): On behalf of the ACCP, Guyatt et al. (2012) published The Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines that provides treatment guidelines for the circumstance when a pregnant woman is known to be homozygous for FVL or the prothrombin 20210A variant

American College of Medical Genetics (ACMG): On behalf of the ACMG, Grody et al. (2006) recommended testing for the following indications:
• age under 50, any venous thrombosis
• venous thrombosis in unusual sites (such as hepatic, mesenteric, and cerebral veins)
• recurrent venous thrombosis
• venous thrombosis and a strong family history of thrombotic disease
• venous thrombosis in pregnant women or women taking oral contraceptives
• relatives of individuals with venous thrombosis under age 50
• myocardial infarction in female smokers under age 50

Testing may also be considered in the following situations:

• venous thrombosis, age over 50, except when active malignancy is present
• relatives of individuals known to have FV Leiden (FVL). Knowledge that they have the FVL variant may influence management of pregnancy and may be a factor in decision-making regarding oral contraceptive use.
• women with recurrent pregnancy loss or unexplained severe preeclampsia, placental abruption, intrauterine fetal growth retardation, or stillbirth. Knowledge of FVL carrier status may influence management of future pregnancies.

FVL testing is not recommended for the following:

• a general population screen
• a routine initial test during pregnancy or prior to the use of oral contraceptives, hormone replacement therapy (HRT) or selective estrogen receptor modulators (SERMs)
• a prenatal or newborn test, or as a routine test in asymptomatic children
• a routine initial test in individuals with arterial thrombosis (testing may be considered, however, in selected young individuals [under age 50] with unexplained arterial thrombosis in the absence of other risk factors for atherosclerotic vascular disease)

American Congress of Obstetricians and Gynecologists (ACOG): Practice Bulletin number 197 (2018) regarding inherited thrombophilias in pregnancy notes:

• Screening for inherited thrombophilias is not recommended for women with a history of fetal loss or adverse pregnancy outcomes (e.g., placental abruption, preeclampsia, fetal growth restriction) because is not recommended. (Level B, based on limited or inconsistent scientific evidence)
• Because of the lack of association between either heterozygosity or homozygosity for the MTHFR C677T polymorphism and any negative pregnancy outcomes, increased ant increased risk of VTE, screening with either MTHFR mutation analyses or fasting homocysteine levels is not recommended. (Level B, based on limited or inconsistent scientific evidence)
• Among women with personal histories of VTE, recommended screening tests for inherited thrombophilias should include factor V Leiden mutation and G20210A mutation. (Level C, based primarily on consensus and expert opinion)

Screening for inherited thrombophilias is useful only when results will affect management decisions, and is not useful in situations where treatment is indicated for other risk factors. Targeted assessment may be considered in the following clinical settings:

• A personal history of venous thromboembolism that was associated with or without a recurrent risk factor (e.g., fractures, surgery, and prolonged immobilization) and no prior thrombophilia testing.
• A first-degree relative (e.g., parent or sibling) with a history of high-risk thrombophilia.

Recommendations based primarily on consensus and expert opinion note screening for inherited thrombophilias should include FVL mutation; prothrombin G20210A mutation; and antithrombin, protein C, and protein S
deficiencies. Additionally all patients with inherited thrombophilias should undergo individualized risk assessment, which may modify management decisions.

American Heart Association (AHA): On behalf of the AHA, Kim (2003) published a statement supporting the ACMG guidelines. According to this statement, patients who develop a deep vein thrombosis (DVT) or pulmonary embolism (PE) and are from a family with a confirmed FVL diagnosis should be tested. Likewise, even if there is no family history of FV Leiden (FVL, F5L), anyone who has had a deep vein thrombosis (DVT) or pulmonary embolus (PE) that is unexplained, recurrent, occurred at a young age (under 50), occurred during pregnancy, was associated with hormone use, or developed in an unusual site (such as the veins of the brain or abdomen) may benefit from testing for FVL and other causes of hereditary thrombophilia.

Evaluation of Genomic Applications in Practice and Prevention Working Group (EGAPP, 2011): The EGAPP published guidelines regarding the routine testing for factor V Leiden (R506Q) and prothrombin (20210G>A) mutations in adults with a history of idiopathic venous thromboembolism and their adult family members (2011). According to the EGAPP there was adequate evidence to recommend against routine testing for FVL and/or prothrombin 20210G>A (PT) in the following circumstances: (1) adults with idiopathic venous thromboembolism (VTE). In such cases, longer term secondary prophylaxis to avoid recurrence offers similar benefits to patients with and without one or more of these mutations. (2) Asymptomatic adult family members of patients with VTE and an FVL or PT mutation, for the purpose of considering primary prophylactic anticoagulation. Potential benefits are unlikely to exceed potential harms. The overall certainty of these findings was deemed "moderate." The evidence was insufficient to determine whether FVL/PT testing might have clinical utility in some circumstances, such as for identifying FVL homozygosity among asymptomatic family members of adults with idiopathic VTE or counseling patients about the risks and benefits of antithrombotic therapy. Based on the available evidence, the certainty of net health benefit was deemed "low." The recommendations do not extend to patients with other risk factors for thrombosis, such as contraceptive use, as the evidence review that serves as the basis for the recommendations focused primarily on idiopathic VTE.

Pregnancy and Thrombosis Working Group: On behalf of this association, Duhl et al. (2007) published a consensus report and recommendations for prevention and treatment of VTE and adverse pregnancy outcome. The authors acknowledged that no clear conclusions can be drawn from the studies they reviewed regarding an association between inherited thrombophilia’s and adverse pregnancy outcomes-some studies show a positive relationship, and other studies show no relationship. According to Duhl, most of the research demonstrated that FVL is not typically associated with pregnancy loss prior to 10 weeks’ gestation. More evidence exists suggesting that a loss after 10 weeks’ gestation may be associated with these disorders.

GeneReviews (2018): Molecular genetic testing is recommended for the following clinical scenarios:

- Individuals receiving direct thrombin inhibitors or direct factor Xa inhibitors, which may interfere with the AC resistance assay
- To confirm the diagnosis and to distinguish factor V Leiden variant heterozygotes from homozygotes and pseudohomozygotes with positive borderline or very low APC resistance assay results
- Strong lupus inhibitors and a markedly prolonged baseline aPTT when the results of testing would affect clinical management
- persons with a first unprovoked VTE who are planning to stop anticoagulation
- female relatives of persons with VTE or hereditary thrombophilia considering estrogen contraception or hormone replacement
- female relatives of persons with VTE or hereditary thrombophilia contemplating prophylactic anticoagulation during pregnancy

Outside of the US

British Committee for Standards in Hematology ([BSCH], 2010): On behalf of the BCSH, Baglin et al. noted that testing for heritable thrombophilias is not indicated in unselected patients presenting with venous thrombosis. Testing selected patients may give an indication of risk of recurrence following completion of anticoagulant therapy, for example those presenting with venous thrombosis at an early age (<40 years) and who are from apparent thrombosis-prone families (more than two other symptomatic family members). Other selected patient groups in whom the results of testing may influence treatment are children with purpura...
fulminans and pregnant women at risk of venous thrombosis. The decision to test these selected patients should be based on whether or not test results are likely to influence treatment decisions.

European Genetics Foundation, the Cardiovascular Disease Educational and Research Trust, the Mediterranean League on Thromboembolism, and the International Union of Angiology: In the International Consensus Statement for Thrombophilia and Thromboembolism, Nicolaides et al. (2005) provided guidelines for investigation and management of patients with thrombophilia with or without VTE). According to the authors, heterozygote FVL is found in 0–15% of the normal population, 20% of patients with venous thrombosis and in 40% of families with thrombophilia, whereas the homozygote FVL mutation is found in only 0.02% of the normal population, but the relative risk is high. The authors researched the etiology, testing, diagnosis, risk factors, prevention and management of thrombophilia. Based on this research, the authors concluded that screening for thrombophilia should occur in:

• all patients with a first episode of spontaneous VTE
• patients with VTE under the age of 50, even with a transient predisposing factor
• patients with VTE whose only risk factor is oral contraceptive therapy or pregnancy. However, screening with other than the molecular tests should be performed at least two weeks after delivery or hormone therapy cessation.
• patients with recurrent VTE, irrespective of the presence of risk factors
• patients with recurrent superficial thrombophlebitis without cancer in the absence of varicose veins
• patients with VTE at unusual sites such as cerebral venous sinus, mesenteric or hepatic veins, and retinal vein occlusion under the age of 50
• patients with warfarin-induced skin necrosis and neonates with purpura fulminans not related to sepsis
• asymptomatic first-degree relatives of individuals with proven symptomatic thrombophilia. The authors felt this was particularly important for females in the child-bearing years.
• two consecutive or three nonconsecutive abortions at any gestational age, or one fetal death after week 20
• severe preeclampsia
• children with VTE

National Institute for Health and Care Excellence ([NICE], 2012): regarding testing for inherited thrombophilias, NICE notes the following:

• Consider testing for hereditary thrombophilia in patients who have had unprovoked DVT or PE and who have a first-degree relative who has had DVT or PE if it is planned to stop anticoagulation treatment. [2012]
• Do not offer thrombophilia testing to patients who have had provoked DVT or PE. [2012]
• Do not routinely offer thrombophilia testing to first-degree relatives of people with a history of DVT or PE and thrombophilia. [2012]

Royal College of Obstetricians and Gynaecologists (RCOG): The RCOG (2011) notes that women with second-trimester miscarriage should be tested for inherited thrombophilias including FVL, factor II (prothrombin) gene mutation, and protein S.

Amyotrophic Lateral Sclerosis:

European Federation of Neurological Societies (EFNS): Regarding amyotrophic lateral sclerosis (ALS), on behalf of the EFNS, Bergunder et al. (2011) noted that “Despite the rather low prevalence sequencing of the small SOD1 gene should be considered in patients with ALS with dominant inheritance to offer presymptomatic or prenatal diagnosis, if this is requested by the family.

Methylenetetrahydrofolate Reductase (NAD(P)H) (MTHFR):

American College of Medical Genetics (ACMG, 2013): The ACMG notes:
• MTHFR polymorphism genotyping should not be ordered as part of the clinical evaluation for thrombophilia or recurrent pregnancy loss
• MTHFR polymorphism genotyping should not be ordered for at-risk family members

Alzheimer Disease: APOE, APP, PSEN1 and PSEN2 Gene Variants

American Academy of Neurology (AAN): The Quality Standards Subcommittee of the AAN updated an earlier practice parameter for the diagnosis of dementia in the elderly. Regarding AD, this evidence-based review concluded that there are no laboratory tests, including APOE genotyping or other genetic markers or biomarkers, which are appropriate for routine use in the clinical evaluation of patients with suspected AD. However, genotyping and biomarkers, as well as imaging, are promising avenues that are being pursued (Knopman, et al., 2001; reaffirmed 2004).

American Psychiatric Association (2007): Practice Guidelines for the treatment of patients with Alzheimer’s disease and other dementias note that a definitive diagnosis of AD requires both the clinical syndrome and microscopic examination of the brain at autopsy, at which time the characteristic plaques and neurofibrillary tangles widely distributed in the cerebral cortex will be seen. A careful clinical diagnosis of disease conforms to the pathological diagnosis 70%–90% of the time. Further, the guideline notes although genes involved in a variety of dementia syndromes have been identified and family members of patients with dementia are often concerned about their risk of developing dementia, genetic testing is generally not part of the evaluation of patients with dementia except in very specific instances. In particular, testing for apolipoprotein E4 (APOE4) is not recommended for use in diagnosis. The presence of an APOE4 allele does not change the need for a thorough workup and does not add substantially to diagnostic confidence.

National Institute on Aging (NIA, 2011): The NIA published a fact sheet noting that although a blood test can identify which APOE alleles a person has, it cannot predict who will or will not develop Alzheimer’s disease. It is unlikely that genetic testing will ever be able to predict the disease with 100% accuracy because too many other factors may influence its development and progression. Further, the NIA noted APOE testing is used in research settings to identify study participants who may have an increased risk of developing Alzheimer’s.

National Institute on Aging (NIH)/Alzheimer’s Association ([AA]; 2011): The NIA/AA issued consensus recommendations regarding the diagnosis of Alzheimer’s disease (AD). For probable AD dementia in a carrier of a causative genetic mutation the recommendations note that in persons who meet the core clinical criteria for probable AD dementia, evidence of a causative genetic mutation (in APP, PSEN1, or PSEN2), increases the certainty that the condition is caused by AD pathology. Carriage of the 3/4 allele of the apolipoprotein E gene is not sufficiently specific to be considered in this category.

National Society of Genetic Counselors (NSGC)/American College of Medical Genetics (ACMG): On behalf of the NSGC/ASGC, Goldman et al. (2011) published consensus practice guidelines for genetic counseling and testing for AD. The Guidelines recommend that pediatric testing for AD should not occur. Additionally, the Societies note that direct-to-consumer APOE testing is not advised.

The Guidelines note that a risk assessment should be performed by pedigree analysis to determine whether the family history is consistent with early-onset Alzheimer’s disease (EOAD) or late-onset Alzheimer’s disease (LOAD) and with autosomal dominant (with or without complete penetrance), familial, or sporadic inheritance. Patients should be informed that currently there are no proven pharmacologic or lifestyle choices that reduce the risk of developing AD or stop its progression. The Guidelines also note:

For families in which an autosomal dominant AD gene mutation is a possibility:

• Testing for genes associated with early-onset autosomal dominant AD should be offered in the following situations:
 - A symptomatic individual with EOAD in the setting of a family history of dementia or in the setting of an unknown family history (e.g., adoption).
 - Autosomal dominant family history of dementia with one or more cases of EOAD.
A relative with a mutation consistent with EOAD (currently PSEN1/2 or APP).
Ideally, an affected family member should be tested first. If no affected family member is available for testing and an asymptomatic individual remains interested in testing despite counseling about the low likelihood of an informative result (a positive result for a pathogenic mutation), he/she should be counseled according to the recommended protocol. If the affected relative, or their next of kin, is uninterested in pursuing tested, the option of deoxyribonucleic acid (DNA) banking should be discussed.

For families in which autosomal dominant AD is unlikely:
- Genetic testing for susceptibility loci (e.g., apolipoprotein-E [APOE]) is not clinically recommended due to limited clinical utility and poor predictive value.

Canadian Medical Association: Recommendations for risk assessment and prevention of Alzheimer’s disease, based on the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia held in March 2006, were reported by Patterson and colleagues (2008). The recommendations for genetic risk factors included:

- Predictive genetic testing may be offered to the following at-risk individuals with an apparent autosomal dominant inheritance when a family specific mutation has been identified:
 - first-degree relatives (e.g., children and siblings) of an affected person with the mutation
 - first cousins of an affected person if the common ancestors (parents who were siblings) died before the average age of onset of dementia in the family
 - nieces and nephews of an affected person whose parent (sibling of the affected person) died before the average age of onset of dementia in the family
 - minors are not usually referred for predictive genetic testing
- Genetic screening for the APOE genotype in asymptomatic individuals in the general population is not recommended because of low sensitivity and specificity.

European Federation of Neurological Societies (EFNS): On behalf of the EFNS Hort et al. (2007) published guidelines for the diagnosis and management of Alzheimer’s disease. The Guideline notes “Screening for known pathogenic mutations can be undertaken in patients with appropriate phenotype or a family history of an autosomal dominant dementia. Routine apolipoprotein E (Apo E) genotyping is not recommended.

Cardiac Disease-Risk

American College of Cardiology Foundation (ACCF) /American Heart Association (AHA) Task Force on Practice Guidelines: Greenland et al. (2010) published guidelines which note that genotype testing for CHD risk assessment in asymptomatic adults is not recommended. The task force noted that there is currently no proven benefit in risk assessment when genomic testing is added to the basic global risk assessment, such as Framingham. There is no data to support results of genotype testing alter management and improve clinical outcomes.

The task force conducted a systematic review of the current scientific evidence (March 2008 – April 2010) and used evidence based methodologies to weigh the evidence which was reviewed. Level A evidence represented data from multiple randomized controlled trials or meta-analyses, level B evidence was data from a single RCT or nonrandomized trial, and level C evidence represented consensus opinion, case studies or standard of care. The recommendations were approved and endorsed by the ACCF, AHA, American Society of Echocardiography, American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and Prevention, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. The American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) published guidelines for assessment of cardiovascular risk in asymptomatic individuals (i.e., apparently healthy adult) (Greenland, et al., 2010). The guidelines do not support genotype testing (level B evidence) or measurement of lipid parameters such as lipoproteins, apolipoproteins, particle size and density, beyond the standard fasting lipid profile (level C evidence), or natriuretic peptide testing (level B evidence).
Updated ACC/AHA guidelines on the assessment of cardiovascular risk (Goff, 2013) do not address genetic testing to determine cardiovascular risk.

Evaluation of Genomic Applications in Practice and Prevention (EGAPP, 2010): The working group concluded there was insufficient evidence to determine analytic validity, clinical validity, or clinical utility for gene expression testing for determining cardiovascular risk.

European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS): Guidelines for the management of dyslipidemias do not recommend genotype testing for cardiovascular risk estimation (Catapano, et al., 2011).

Multi-Gene Panel Testing for Non-Syndromic Hearing Loss

American College of Medical Genetics and Genomics (AMCG, 2014): Guidelines for the clinical evaluation and etiologic diagnosis of hearing loss include the following recommendations regarding genetic testing for nonsyndromic hearing loss:

- For individuals lacking physical findings suggestive of a known syndrome and having medical and birth histories that do not suggest an environmental cause of hearing loss, a tiered diagnostic approach should be implemented:
 - Pretest genetic counseling should be provided, and, with patient’s informed consent, genetic testing should be ordered.
 - Single-gene testing may be warranted in cases in which the medical or family history, or presentation of the hearing loss, suggests a specific etiology.
 - In the absence of any specific clinical indications and for singleton cases and cases with apparent autosomal recessive inheritance, the next step should be testing for DFNB1-related hearing loss (due to mutations in GJB2 and adjacent deletions in GJB6). If initial genetic testing is negative, genetic testing using gene panel tests, NGS technologies such as large sequencing panels targeted toward hearing loss–related genes, whole-exome sequencing (WES), or whole-genome sequencing (WGS) strategies may be considered. Since several tests are clinically available, the clinician should be aware of the genes included in the panel chosen and the performance characteristics of the platform chosen, including coverage, analytic sensitivity, and the types of mutations that will be detected.
 - If genetic testing reveals mutation(s) in a hearing loss–related gene, mutation-specific genetic counseling should be provided, followed by appropriate medical evaluations and referrals.
 - If genetic testing fails to identify an etiology for a patient’s hearing loss, the possibility of a genetic or acquired etiology remains. This point should be emphasized since it may be misunderstood by clinicians and by patients and their families. For interested patients and families, further genetic testing may be pursued on a research basis.
- Regardless of whether genetic test results are positive, negative, or inconclusive, results should be communicated through the process of genetic counseling.

Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
 2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Genetic Counseling

Considered Medically Necessary when criteria in the applicable policy statements listed above are met:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>96040</td>
<td>Medical genetics and genetic counseling services, each 30 minutes face-to-face with patient/family</td>
</tr>
</tbody>
</table>
HCPCS Codes | Description
--- | ---
S0265 | Genetic counseling, under physician supervision, each 15 minutes

Single Gene Germline Genetic Testing

Considered Medically Necessary when criteria in the applicable policy statements listed above are met:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81105</td>
<td>Human Platelet Antigen 1 genotyping (HPA-1), ITGB3 (integrin, beta 3 [platelet glycoprotein IIIa], antigen CD61 [GPIIia]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-1a/b (L33P)</td>
</tr>
<tr>
<td>81106</td>
<td>Human Platelet Antigen 2 genotyping (HPA-2), GP1BA (glycoprotein Ib [platelet], alpha polypeptide [GPIbα]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-2a/b (T145M)</td>
</tr>
<tr>
<td>81107</td>
<td>Human Platelet Antigen 3 genotyping (HPA-3), ITGA2B (integrin, alpha 2b [platelet glycoprotein Ib of Iib/IIia complex], antigen CD41 [GPIIb]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-3a/b (I843S)</td>
</tr>
<tr>
<td>81108</td>
<td>Human Platelet Antigen 4 genotyping (HPA-4), ITGB3 (integrin, beta 3 [platelet glycoprotein IIIa], antigen CD61 [GPIIia]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-4a/b (R143Q)</td>
</tr>
<tr>
<td>81109</td>
<td>Human Platelet Antigen 5 genotyping (HPA-5), ITGA2 (integrin, alpha 2 [CD49B, alpha 2 subunit of VLA-2 receptor] [GPla]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant (eg, HPA-5a/b (K505E))</td>
</tr>
<tr>
<td>81110</td>
<td>Human Platelet Antigen 6 genotyping (HPA-6w), ITGB3 (integrin, beta 3 [platelet glycoprotein IIIa, antigen CD61] [GPIIia]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-6a/b (R489Q)</td>
</tr>
<tr>
<td>81111</td>
<td>Human Platelet Antigen 9 genotyping (HPA-9w), ITGA2B (integrin, alpha 2b [platelet glycoprotein Ib of Iib/IIia complex, antigen CD41] [GPIIib]) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-9a/b (V837M)</td>
</tr>
<tr>
<td>81112</td>
<td>Human Platelet Antigen 15 genotyping (HPA-15), CD109 (CD109 molecule) (eg, neonatal alloimmune thrombocytopenia [NAIT], post-transfusion purpura), gene analysis, common variant, HPA-15a/b (S682Y)</td>
</tr>
<tr>
<td>81161</td>
<td>DMD (dystrophin) (eg, Duchenne/Becker muscular dystrophy) deletion analysis, and duplication analysis, if performed.</td>
</tr>
<tr>
<td>81171</td>
<td>AFF2 (AF4/FMR2 family, member 2 [FMR2]) (eg, fragile X mental retardation 2 [FRAXE]) gene analysis; evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81172</td>
<td>AFF2 (AF4/FMR2 family, member 2 [FMR2]) (eg, fragile X mental retardation 2 [FRAXE]) gene analysis; characterization of alleles (eg, expanded size and methylation status)</td>
</tr>
<tr>
<td>81173</td>
<td>AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Kennedy disease, X chromosome inactivation) gene analysis; full gene sequence</td>
</tr>
<tr>
<td>81174</td>
<td>AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Kennedy disease, X chromosome inactivation) gene analysis; known familial variant</td>
</tr>
<tr>
<td>81177</td>
<td>ATN1 (atrophin 1) (eg, dentatorubral-pallidoluysian atrophy) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81178</td>
<td>ATXN1 (ataxin 1) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81179</td>
<td>ATXN2 (ataxin 2) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81180</td>
<td>ATXN3 (ataxin 3) (eg, spinocerebellar ataxia, Machado-Joseph disease) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>CPT® Codes</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>81181</td>
<td>ATXN7 (ataxin 7) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81182</td>
<td>ATXN8OS (ATXN8 opposite strand [non-protein coding]) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81183</td>
<td>ATXN10 (ataxin 10) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81184</td>
<td>CACNA1A (calcium voltage-gated channel subunit alpha1 A) (eg, spinocerebellar ataxia) gene analysis; evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81185</td>
<td>CACNA1A (calcium voltage-gated channel subunit alpha1 A) (eg, spinocerebellar ataxia) gene analysis; full gene sequence</td>
</tr>
<tr>
<td>81186</td>
<td>CACNA1A (calcium voltage-gated channel subunit alpha1 A) (eg, spinocerebellar ataxia) gene analysis; known familial variant(s)</td>
</tr>
<tr>
<td>81187</td>
<td>CNBP (CCHC-type zinc finger nucleic acid binding protein) (eg, myotonic dystrophy type 2) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81188</td>
<td>CSTB (cystatin B) (eg, Unverricht-Lundborg disease) gene analysis; evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81189</td>
<td>CSTB (cystatin B) (eg, Unverricht-Lundborg disease) gene analysis; full gene sequence</td>
</tr>
<tr>
<td>81190</td>
<td>CSTB (cystatin B) (eg, Unverricht-Lundborg disease) gene analysis; known familial variant(s)</td>
</tr>
<tr>
<td>81200</td>
<td>ASPA (aspartoacylase) (eg, Canavan disease) gene analysis, common variants (eg, E285A, Y231X)</td>
</tr>
<tr>
<td>81204</td>
<td>AR (androgen receptor) (eg, spinal and bulbar muscular atrophy, Kennedy disease, X chromosome inactivation) gene analysis; characterization of alleles (eg, expanded size or methylation status)</td>
</tr>
<tr>
<td>81220</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; common variants (eg, ACMG/ACOG guidelines)</td>
</tr>
<tr>
<td>81221</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; common variants (eg, ACMG/ACOG guidelines), known familial variants</td>
</tr>
<tr>
<td>81222</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; duplication/deletion variants</td>
</tr>
<tr>
<td>81223</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; full gene sequence</td>
</tr>
<tr>
<td>81224</td>
<td>CFTR (cystic fibrosis transmembrane conductance regulator) (eg, cystic fibrosis) gene analysis; intron 8 poly-T analysis (eg, male infertility)</td>
</tr>
<tr>
<td>81234</td>
<td>DMPK (DM1 protein kinase) (eg, myotonic dystrophy type 1) gene analysis; evaluation to detect abnormal (expanded) alleles</td>
</tr>
<tr>
<td>81238</td>
<td>F9 (coagulation factor IX) (eg, hemophilia B), full gene sequence</td>
</tr>
<tr>
<td>81239</td>
<td>DMPK (DM1 protein kinase) (eg, myotonic dystrophy type 1) gene analysis; characterization of alleles (eg, expanded size)</td>
</tr>
<tr>
<td>81240†</td>
<td>F2 (prothrombin, coagulation factor II) (eg, hereditary hypercoagulability) gene analysis, 20210G>A variant</td>
</tr>
<tr>
<td>81241†</td>
<td>F5 (coagulation factor V) (eg, hereditary hypercoagulability) gene analysis, Leiden variant</td>
</tr>
<tr>
<td>81243</td>
<td>FMR1 (fragile X mental retardation 1) (eg, fragile X mental retardation) gene analysis; evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81244</td>
<td>FMR1 (fragile X mental retardation 1) (eg, fragile X mental retardation) gene analysis; characterization of alleles (eg, expanded size and promoter methylation status)</td>
</tr>
<tr>
<td>81247</td>
<td>G6PD (glucose-6-phosphate dehydrogenase) (eg, hemolytic anemia, jaundice), gene analysis; common variant(s) (eg, A, A-)</td>
</tr>
<tr>
<td>81248</td>
<td>G6PD (glucose-6-phosphate dehydrogenase) (eg, hemolytic anemia, jaundice), gene analysis; known familial variant(s)</td>
</tr>
<tr>
<td>81249</td>
<td>G6PD (glucose-6-phosphate dehydrogenase) (eg, hemolytic anemia, jaundice), gene analysis; full gene sequence</td>
</tr>
<tr>
<td>81251</td>
<td>GBA (glucosidase, beta, acid) (eg, Gaucher disease) gene analysis, common variants (eg, N370S, 84GG, L444P, IVS2+1G>A)</td>
</tr>
<tr>
<td>CPT® Codes</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>81252</td>
<td>GJB2 (gap junction protein, beta 2, 26kDa; connexin 26) (eg, nonsyndromic hearing loss) gene analysis; full gene sequence</td>
</tr>
<tr>
<td>81253</td>
<td>GJB2 (gap junction protein, beta 2, 26kDa; connexin 26) (eg, nonsyndromic hearing loss) gene analysis; known familial variants</td>
</tr>
<tr>
<td>81254</td>
<td>GJB6 (gap junction protein, beta 6, 30kDa, connexin 30) (eg, nonsyndromic hearing loss) gene analysis, common variants (eg, 309kb [del(GJB6-D13S1830)] and 232kb [del(GJB6-D13S1854)])</td>
</tr>
<tr>
<td>81255</td>
<td>HEXA (hexosaminidase A [alpha polypeptide]) (eg, Tay-Sachs disease) gene analysis, common variants (eg, 1278insTATC, 1421+1G>C, G269S)</td>
</tr>
<tr>
<td>81256</td>
<td>HFE (hemochromatosis) (eg, hereditary hemochromatosis) gene analysis, common variants (eg, C282Y, H63D)</td>
</tr>
<tr>
<td>81257</td>
<td>HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; common deletions or variant (eg, Southeast Asian, Thai, Filipino, Mediterranean, alpha3.7, alpha4.2, alpha20.5, and Constant Spring)</td>
</tr>
<tr>
<td>81258</td>
<td>HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; known familial variant</td>
</tr>
<tr>
<td>81259</td>
<td>HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; full gene sequence</td>
</tr>
<tr>
<td>81260</td>
<td>HBA1/HBA2 (alpha globin 1 and alpha globin 2) (eg, alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease), gene analysis; duplication/deletion variants</td>
</tr>
<tr>
<td>81271</td>
<td>HTT (huntingtin) (eg, Huntington disease) gene analysis; evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81274</td>
<td>HTT (huntingtin) (eg, Huntington disease) gene analysis; characterization of alleles (eg, expanded size)</td>
</tr>
<tr>
<td>81284</td>
<td>FXN (frataxin) (eg, Friedreich ataxia) gene analysis; evaluation to detect abnormal (expanded) alleles</td>
</tr>
<tr>
<td>81285</td>
<td>FXN (frataxin) (eg, Friedreich ataxia) gene analysis; characterization of alleles (eg, expanded size)</td>
</tr>
<tr>
<td>81286</td>
<td>FXN (frataxin) (eg, Friedreich ataxia) gene analysis; full gene sequence</td>
</tr>
<tr>
<td>81289</td>
<td>FXN (frataxin) (eg, Friedreich ataxia) gene analysis; known familial variant(s)</td>
</tr>
<tr>
<td>81302</td>
<td>MECP2 (methyl CpG binding protein 2) (eg, Rett Syndrome) gene analysis; full sequence analysis</td>
</tr>
<tr>
<td>81303</td>
<td>MECP2 (methyl CpG binding protein 2) (eg, Rett Syndrome) gene analysis; known familial variant</td>
</tr>
<tr>
<td>81304</td>
<td>MECP2 (methyl CpG binding protein 2) (eg, Rett Syndrome) gene analysis; duplication/deletion variants</td>
</tr>
<tr>
<td>81312</td>
<td>PABPN1 (poly[A] binding protein nuclear 1) (eg, oculopharyngeal muscular dystrophy) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81329</td>
<td>SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular atrophy) gene analysis; dosage/deletion analysis (eg, carrier testing), includes SMN2 (survival of motor neuron 2, centromeric) analysis, if performed</td>
</tr>
<tr>
<td>81330</td>
<td>SMPD1 (sphingomyelin phosphodiesterase 1, acid lysosomal) (eg, Niemann-Pick disease, Type A) gene analysis, common variants (eg, R496L, L302P, fsP330)</td>
</tr>
<tr>
<td>81332</td>
<td>SERPINA1 (serpin peptidase inhibitor, clade A, alpha-1 antiproteinase, antitrypsin, member 1) (eg, alpha-1-antitrypsin deficiency), gene analysis, common variants (eg, *S and *Z)</td>
</tr>
<tr>
<td>81333</td>
<td>TGFBI (transforming growth factor beta-induced) (eg, corneal dystrophy) gene analysis, common variants (eg, R124H, R124C, R124L, R555W, R555Q)</td>
</tr>
<tr>
<td>81336</td>
<td>SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular atrophy) gene analysis; full gene sequence</td>
</tr>
<tr>
<td>81337</td>
<td>SMN1 (survival of motor neuron 1, telomeric) (eg, spinal muscular atrophy) gene analysis; known familial sequence variant(s)</td>
</tr>
<tr>
<td>81343</td>
<td>PPP2R2B (protein phosphatase 2 regulatory subunit Bbeta) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>CPT® Codes</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>81344</td>
<td>TBP (TATA box binding protein) (eg, spinocerebellar ataxia) gene analysis, evaluation to detect abnormal (eg, expanded) alleles</td>
</tr>
<tr>
<td>81361</td>
<td>HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); common variant(s) (eg, HbS, HbC, HBE)</td>
</tr>
<tr>
<td>81362</td>
<td>HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); known familial variant(s)</td>
</tr>
<tr>
<td>81363</td>
<td>HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); duplication/deletion variant(s)</td>
</tr>
<tr>
<td>81364</td>
<td>HBB (hemoglobin, subunit beta) (eg, sickle cell anemia, beta thalassemia, hemoglobinopathy); full gene sequence</td>
</tr>
<tr>
<td>81400††</td>
<td>Molecular pathology procedure, Level 1 (eg, identification of single germline variant [eg, SNP] by techniques such as restriction enzyme digestion or melt curve analysis)</td>
</tr>
<tr>
<td>81401††</td>
<td>Molecular pathology procedure, Level 2 (eg, 2-10 SNPs, 1 methylated variant, or 1 somatic variant [typically using nonsequencing target variant analysis], or detection of a dynamic mutation disorder/triplet repeat)</td>
</tr>
<tr>
<td>81402</td>
<td>Molecular pathology procedure, Level 3 (eg, >10 SNPs, 2-10 methylated variants, or 2-10 somatic variants [typically using non-sequencing target variant analysis], immunoglobulin and T-cell receptor gene rearrangements, duplication/deletion variants of 1 exon, loss of heterozygosity [LOH], uniparental disomy [UPD])</td>
</tr>
<tr>
<td>81403††</td>
<td>Molecular pathology procedure, Level 4 (eg, analysis of single exon by DNA sequence analysis, analysis of >10 amplicons using multiplex PCR in 2 or more independent reactions, mutation scanning or duplication/deletion variants of 2-5 exons)</td>
</tr>
<tr>
<td>81404††</td>
<td>Molecular pathology procedure, Level 5 (eg, analysis of 2-5 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 6-10 exons, or characterization of a dynamic mutation disorder/triplet repeat by Southern blot analysis)</td>
</tr>
<tr>
<td>81405††</td>
<td>Molecular pathology procedure, Level 6 (eg, analysis of 6-10 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 11-25 exons, regionally targeted cytogenomic array analysis)</td>
</tr>
<tr>
<td>81406††</td>
<td>Molecular pathology procedure, Level 7 (eg, analysis of 11-25 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of 26-50 exons)</td>
</tr>
<tr>
<td>81407</td>
<td>Molecular pathology procedure, Level 8 (eg, analysis of 26-50 exons by DNA sequence analysis, mutation scanning or duplication/deletion variants of >50 exons, sequence analysis of multiple genes on one platform)</td>
</tr>
<tr>
<td>81408</td>
<td>Molecular pathology procedure, Level 9 (eg, analysis of >50 exons in a single gene by DNA sequence analysis)</td>
</tr>
<tr>
<td>81479†††</td>
<td>Unlisted molecular pathology procedure</td>
</tr>
<tr>
<td>83520†††</td>
<td>Immunoassay for analyte other than infectious agent antibody or infectious agent antigen; quantitative, not otherwise specified</td>
</tr>
<tr>
<td>0180U</td>
<td>Red cell antigen (ABO blood group) genotyping (ABO), gene analysis Sanger/chain termination/conventional sequencing, ABO (ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase) gene, including subtyping, 7 exons</td>
</tr>
<tr>
<td>0181U</td>
<td>Red cell antigen (Colton blood group) genotyping (CO), gene analysis, AQP1 (aquaporin 1 [Colton blood group]) exon 1</td>
</tr>
<tr>
<td>0182U</td>
<td>Red cell antigen (Cromer blood group) genotyping (CROM), gene analysis, CD55 (CD55 molecule [Cromer blood group]) exons 1-10</td>
</tr>
<tr>
<td>0183U</td>
<td>Red cell antigen (Diego blood group) genotyping (DI), gene analysis, SLC4A1 (solute carrier family 4 member 1 [Diego blood group]) exon 19</td>
</tr>
<tr>
<td>0184U</td>
<td>Red cell antigen (Dombrock blood group) genotyping (DO), gene analysis, ART4 (ADP-ribosyltransferase 4 [Dombrock blood group]) exon 2</td>
</tr>
<tr>
<td>0185U</td>
<td>Red cell antigen (H blood group) genotyping (FUT1), gene analysis, FUT1 (fucosyltransferase 1 [H blood group]) exon 4</td>
</tr>
<tr>
<td>0186U</td>
<td>Red cell antigen (H blood group) genotyping (FUT2), gene analysis, FUT2 (fucosyltransferase 2) exon 2</td>
</tr>
<tr>
<td>CPT® Codes</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>0187U</td>
<td>Red cell antigen (Duffy blood group) genotyping (FY), gene analysis, ACKR1 (atypical chemokine receptor 1 [Duffy blood group]) exons 1-2</td>
</tr>
<tr>
<td>0188U</td>
<td>Red cell antigen (Gerbich blood group) genotyping (GE), gene analysis, GYP C (glycophorin C [Gerbich blood group]) exons 1-4</td>
</tr>
<tr>
<td>0189U</td>
<td>Red cell antigen (MNS blood group) genotyping (GYP A), gene analysis, GYP A (glycophorin A [MNS blood group]) introns 1, 5, exon 2</td>
</tr>
<tr>
<td>0190U</td>
<td>Red cell antigen (MNS blood group) genotyping (GYP B), gene analysis, GYP B (glycophorin B [MNS blood group]) introns 1, 5, pseudoexon 3</td>
</tr>
<tr>
<td>0191U</td>
<td>Red cell antigen (Indian blood group) genotyping (IN), gene analysis, CD44 (CD44 molecule [Indian blood group]) exons 1-2, 3, 6</td>
</tr>
<tr>
<td>0192U</td>
<td>Red cell antigen (Kidd blood group) genotyping (JK), gene analysis, SLC14A1 (solute carrier family 14 member 1 [Kidd blood group]) gene promoter, exon 9</td>
</tr>
<tr>
<td>0193U</td>
<td>Red cell antigen (JR blood group) genotyping (JR), gene analysis, ABCG2 (ATP binding cassette subfamily G member 2 [Junior blood group]) exons 2-26</td>
</tr>
<tr>
<td>0194U</td>
<td>Red cell antigen (Kell blood group) genotyping (KEL), gene analysis, KEL (Kell metallo-endopeptidase [Kell blood group]) exon 8</td>
</tr>
<tr>
<td>0195U</td>
<td>KLF1 (Kruppel-like factor 1), targeted sequencing (ie, exon 13)</td>
</tr>
<tr>
<td>0196U</td>
<td>Red cell antigen (Lutheran blood group) genotyping (LU), gene analysis, BCAM (basal cell adhesion molecule [Lutheran blood group]) exon 3</td>
</tr>
<tr>
<td>0197U</td>
<td>Red cell antigen (Landsteiner-Wiener blood group) genotyping (LW), gene analysis, ICAM4 (intercellular adhesion molecule 4 [Landsteiner-Wiener blood group]) exon 1</td>
</tr>
<tr>
<td>0198U</td>
<td>Red cell antigen (RH blood group) genotyping (RHD and RHCE), gene analysis Sanger/chain termination/conventional sequencing, RHD (Rh blood group D antigen) exons 1-10 and RHCE (Rh blood group CcEe antigens) exon 5</td>
</tr>
<tr>
<td>0199U</td>
<td>Red cell antigen (Scianna blood group) genotyping (SC), gene analysis, ERMAP (erythroblast membrane associated protein [Scianna blood group]) exons 4, 12</td>
</tr>
<tr>
<td>0200U</td>
<td>Red cell antigen (Kx blood group) genotyping (XK), gene analysis, XK (X-linked Kx blood group) exons 1-3</td>
</tr>
<tr>
<td>0201U</td>
<td>Red cell antigen (Yt blood group) genotyping (YT), gene analysis, ACHE (acetylcholinesterase [Cartwright blood group]) exon 2</td>
</tr>
</tbody>
</table>

†Note: Considered Not Medically Necessary when used to report prothrombin gene mutation for the screening, diagnosis or management of coronary heart disease

†† Note: Considered Not Medically Necessary when used to report:
- ACE (angiotensin converting enzyme) (eg, hereditary blood pressure regulation), insertion/deletion variant (81400)
- AGTR1 (angiotensin II receptor, type 1) (eg, essential hypertension), 1166A>C variant (81400)
- ANG (angiogenin, ribonuclease, RNase A family, 5) (eg, amyotrophic lateral sclerosis), full gene sequence (81403)
- CDKN2A (cyclin-dependent kinase inhibitor 2A) (eg, CDKN2A-related cutaneous malignant melanoma, familial atypical mole-malignant melanoma syndrome), full gene sequence (81404)
- FUS (fused in sarcoma) (eg, amyotrophic lateral sclerosis), full gene sequence (81406)
- OPTN (optineurin) (eg, amyotrophic lateral sclerosis), full gene sequence (81406)
- PSEN1 (presenilin 1) (eg, Alzheimer’s disease), full gene sequence (81405)
- PSEN2 (presenilin 2 [Alzheimer’s disease 4]) (eg, Alzheimer’s disease), full gene sequence (81406)
• SOD1 (superoxide dismutase 1, soluble) (eg, amyotrophic lateral sclerosis), full gene sequence (81404)
• TARDBP (TAR DNA binding protein) (eg, amyotrophic lateral sclerosis), full gene sequence (81405)

†††Note: Considered Medically Necessary when used to report any covered single gene genetic test that does not have an assigned CPT/HCPCS code when criteria in the applicable policy statements listed above are not met.

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3841</td>
<td>Genetic testing for retinoblastoma</td>
</tr>
<tr>
<td>S3842</td>
<td>Genetic testing for Von Hippel-Lindau disease</td>
</tr>
<tr>
<td>S3844</td>
<td>DNA analysis of the connexin26 gene (GJB2) for susceptibility to congenital, profound deafness</td>
</tr>
<tr>
<td>S3845</td>
<td>Genetic testing for alpha-thalassemia</td>
</tr>
<tr>
<td>S3846</td>
<td>Genetic testing for hemoglobin E beta-thalassemia</td>
</tr>
<tr>
<td>S3849</td>
<td>Genetic testing for Niemann-Pick disease</td>
</tr>
<tr>
<td>S3850</td>
<td>Genetic testing for sickle cell anemia</td>
</tr>
<tr>
<td>S3853</td>
<td>Genetic testing for myotonic muscular dystrophy</td>
</tr>
</tbody>
</table>

Considered Not Medically Necessary:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81291</td>
<td>MTHFR (5,10-methylenetetrahydrofolate reductase) (eg, hereditary hypercoagulability) gene analysis, common variants (eg, 677T, 1298C)</td>
</tr>
<tr>
<td>0001U</td>
<td>Red blood cell antigen typing, DNA, human erythrocyte antigen gene analysis of 35 antigens from 11 blood groups, utilizing whole blood, common RBC alleles reported</td>
</tr>
<tr>
<td>0084U</td>
<td>Red blood cell antigen typing, DNA, genotyping of 10 blood groups with phenotype prediction of 37 red blood cell antigens</td>
</tr>
<tr>
<td>0156U</td>
<td>Copy number (eg, intellectual disability, dysmorphology), sequence analysis</td>
</tr>
<tr>
<td>0170U</td>
<td>Neurology (autism spectrum disorder [ASD]), RNA, next-generation sequencing, saliva, algorithmic analysis, and results reported as predictive probability of ASD diagnosis</td>
</tr>
<tr>
<td>0230U</td>
<td>AR (androgen receptor) (eg, spinal and bulbous muscular atrophy, Kennedy disease, X chromosome inactivation), full sequence analysis, including small sequence changes in exonic and intronic regions, deletions, duplications, short tandem repeat (STR) expansions, mobile element insertions, and variants in non-uniquely mappable regions</td>
</tr>
<tr>
<td>0231U</td>
<td>CACNA1A (calcium voltage-gated channel subunit alpha 1A) (eg, spinocerebellar ataxia), full gene analysis, including small sequence changes in exonic and intronic regions, deletions, duplications, short tandem repeat (STR) gene expansions, mobile element insertions, and variants in non-uniquely mappable regions</td>
</tr>
<tr>
<td>0232U</td>
<td>CSTB (cystatin B) (eg, progressive myoclonic epilepsy type 1A, Unverricht-Lundborg disease), full gene analysis, including small sequence changes in exonic and intronic regions, deletions, duplications, short tandem repeat (STR) expansions, mobile element insertions, and variants in non-uniquely mappable regions</td>
</tr>
<tr>
<td>0233U</td>
<td>FXN (frataxin) (eg, Friedreich ataxia), gene analysis, including small sequence changes in exonic and intronic regions, deletions, duplications, short tandem repeat (STR) expansions, mobile element insertions, and variants in non-uniquely mappable regions</td>
</tr>
<tr>
<td>0234U</td>
<td>MECP2 (methyl CpG binding protein 2) (eg, Rett syndrome), full gene analysis, including small sequence changes in exonic and intronic regions, deletions, duplications, mobile element insertions, and variants in non-uniquely mappable regions</td>
</tr>
</tbody>
</table>
HCPCS Codes

<table>
<thead>
<tr>
<th>Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3800</td>
<td>Genetic testing for amyotrophic lateral sclerosis (ALS)</td>
</tr>
<tr>
<td>S3852</td>
<td>DNA analysis for APOE epsilon 4 allele for susceptibility to Alzheimer’s disease</td>
</tr>
</tbody>
</table>

Multi-Gene Germline Mutation Genetic Testing Panels

Considered Medically Necessary when criteria in the applicable policy statements listed above are met:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81410</td>
<td>Aortic dysfunction or dilation (eg, Marfan syndrome, Loeys Dietz syndrome, Ehler Danlos syndrome type IV, arterial tortuosity syndrome); genomic sequence analysis panel, must include sequencing of at least 9 genes, including FBN1, TGFBR1, TGFBR2, COL3A1, MYH11, ACTA2, SLC2A10, SMAD3, and MYLK</td>
</tr>
<tr>
<td>81419</td>
<td>Epilepsy genomic sequence analysis panel, must include analyses for ALDH7A1, CACNA1A, CDKL5, CHD2, GABRG2, GRIN2A, KCNQ2, MECP2, PCDH19, POLG, PRRT2, SCN1A, SCN1B, SCN2A, SCN8A, SLC2A1, SLC9A6, STXBP1, SYNGAP1, TCF4, TTP1, TSC1, TSC2, and ZEB2</td>
</tr>
<tr>
<td>81430</td>
<td>Hearing loss (eg, nonsyndromic hearing loss, Usher syndrome, Pendred syndrome); genomic sequence analysis panel, must include sequencing of at least 60 genes, including CDH23, CLRN1, GJB2, GPR98, MTRNR1, MYO7A, MYO15A, PCDH15, OTOF, SLC26A4, TMC1, TMPRSS3, USH1C, USH1G, USH2A, and WFS1</td>
</tr>
<tr>
<td>81431</td>
<td>Hearing loss (eg, nonsyndromic hearing loss, Usher syndrome, Pendred syndrome); duplication/deletion analysis panel, must include copy number analyses for STRC and DFNB1 deletions in GJB2 and GJB6 genes</td>
</tr>
<tr>
<td>81442</td>
<td>Noonan spectrum disorders (eg, Noonan syndrome, cardio-facio-cutaneous syndrome, Costello syndrome, LEOPARD syndrome, Noonan-like syndrome), genomic sequence analysis panel, must include sequencing of at least 12 genes, including BRAF, CBL, HRAS, KRAS, MAP2K1, MAP2K2, NRAS, PTPN11, RAF1, RIT1, SHOC2, and SOS1</td>
</tr>
<tr>
<td>81448</td>
<td>Hereditary peripheral neuropathies (eg, Charcot-Marie-Tooth, spastic paraplegia), genomic sequence analysis panel, must include sequencing of at least 5 peripheral neuropathy-related genes (eg, BSCL2, GJB1, MFN2, MPZ, REEP1, SPAST, SPC1, SPTLC1)</td>
</tr>
<tr>
<td>81460</td>
<td>Whole mitochondrial genome (eg, Leigh syndrome, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS], myoclonic epilepsy with ragged-red fibers [MERFF], neuropathy, ataxia, and retinitis pigmentosa [NARP], Leber hereditary optic neuropathy [LHON]), genomic sequence, must include sequence analysis of entire mitochondrial genome with heteroplasmy detection</td>
</tr>
<tr>
<td>81465</td>
<td>Whole mitochondrial genome large deletion analysis panel (eg, Kearns-Sayre syndrome, chronic progressive external ophthalmoplegia), including heteroplasmy detection, if performed</td>
</tr>
<tr>
<td>81479†</td>
<td>Unlisted molecular pathology procedure</td>
</tr>
<tr>
<td>0012U</td>
<td>Germline disorders, gene rearrangement detection by whole genome next-generation sequencing, DNA, whole blood, report of specific gene rearrangement(s)</td>
</tr>
<tr>
<td>0013U</td>
<td>Oncology (solid organ neoplasia), gene rearrangement detection by whole genome next-generation sequencing, DNA, fresh or frozen tissue or cells, report of specific gene rearrangement(s)</td>
</tr>
<tr>
<td>0014U</td>
<td>Hematology (hematolymphoid neoplasia), gene rearrangement detection by whole genome next-generation sequencing, DNA, whole blood or bone marrow, report of specific gene rearrangement(s)</td>
</tr>
</tbody>
</table>

†Note: Considered Medically Necessary when used to report any covered genetic testing panel that does not have an assigned CPT/HCPCS code

Considered Not Medically Necessary:
<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81440</td>
<td>Nuclear encoded mitochondrial genes (e.g., neurologic or myopathic phenotypes), genomic sequence panel, must include analysis of at least 100 genes, including BCS1L, C10orf2, COQ2, COX10, DGUOK, MPV17, OPA1, PDSS2, POLG, POLG2, RRM2B, SCO1, SCO2, SLC25A4, SUCLA2, SUCLG1, TAZ, TK2, and TYMP</td>
</tr>
<tr>
<td>81490</td>
<td>Autoimmune (rheumatoid arthritis), analysis of 12 biomarkers using immunoassays, utilizing serum, prognostic algorithm reported as a disease activity score</td>
</tr>
<tr>
<td>81554</td>
<td>Pulmonary disease (idiopathic pulmonary fibrosis [IPF]), mRNA, gene expression analysis of 190 genes, utilizing transbronchial biopsies, diagnostic algorithm reported as categorical result (e.g., positive or negative for high probability of usual interstitial pneumonia [UIP])</td>
</tr>
<tr>
<td>81599††</td>
<td>Unlisted multianalyte assay with algorithmic analysis</td>
</tr>
<tr>
<td>82397</td>
<td>Chemiluminescent assay</td>
</tr>
<tr>
<td>83520††</td>
<td>Immunoassay for analyte other than infectious agent antibody or infectious agent antigen; quantitative, not otherwise specified</td>
</tr>
<tr>
<td>84999††</td>
<td>Unlisted chemistry procedure</td>
</tr>
<tr>
<td>88346</td>
<td>Immunofluorescence, per specimen; initial single antibody stain procedure</td>
</tr>
<tr>
<td>88350</td>
<td>Immunofluorescence, per specimen; each additional single antibody stain procedure (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>0004M</td>
<td>Scoliosis, DNA analysis of 53 single nucleotide polymorphisms (SNPs), using saliva, prognostic algorithm reported as a risk score</td>
</tr>
<tr>
<td>0236U</td>
<td>SMN1 (survival of motor neuron 1, telomeric) and SMN2 (survival of motor neuron 2, centromeric) (e.g., spinal muscular atrophy) full gene analysis, including small sequence changes in exonic and intronic regions, duplications and deletions, and mobile element insertions</td>
</tr>
</tbody>
</table>

††Note: Considered Not Medically Necessary when used to report any non-covered genetic testing panel that does not have an assigned CPT/HCPCS code

Considered Experimental/Investigational/Unproven:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81493</td>
<td>Coronary artery disease, mRNA, gene expression profiling by real-time RT-PCR of 23 genes, utilizing whole peripheral blood, algorithm reported as a risk score</td>
</tr>
</tbody>
</table>

References

84. Ladapo JA(1), Herman L, Weiner BH, Rhees B, Castle L, Monane M, McPherson JA. Use of a blood test incorporating age, sex, and gene expression influences medical decision-making in the evaluation of women presenting with symptoms suggestive of obstructive coronary artery disease: summary results from two ambulatory care studies in primary care. Menopause. 2015 Apr 6. [Epub ahead of print]

158. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis. 2009 Feb 3;4:3.

