Gastric Pacing/Gastric Electrical Stimulation (GES)

Table of Contents

- Overview .. 1
- Coverage Policy ... 1
- General Background .. 1
- Coding/Billing Information 6
- References .. 7

Related Coverage Resources

- Bariatric Surgery
- Electrical Stimulation Therapy and Home Devices
- Nutritional Support

INSTRUCTIONS FOR USE

The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer’s benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations.

Overview

This Coverage Policy addresses gastric electrical stimulation (GES) for the treatment of intractable nausea and vomiting secondary to gastroparesis.

Coverage Policy

Permanent gastric electrical stimulation (GES) or gastric pacing (e.g., Enterra™ Therapy) is considered medically necessary when provided in accordance with the Humanitarian Device Exemption (HDE) specifications of the U.S. Food and Drug Administration (FDA) for intractable nausea and vomiting secondary to gastroparesis with failure, contraindication, or intolerance of pharmaceutical therapy.

Gastric electrical stimulation (GES) or gastric pacing for any other indication is considered experimental, investigational or unproven.

Temporary gastric electrical stimulation (GES) is considered experimental, investigational or unproven.

General Background

Gastric electrical stimulation (GES) delivers electrical stimuli to the musculature of the gastric wall by means of electrodes which are connected to a stimulator device. The intent is to restore effective gastric contractions. GES
has been proposed for patients with gastroparesis who are refractory to medical treatment. There are two principal types of GES devices that are available: (1) low-frequency/high-energy GES with long pulse stimulation; and (2) high-frequency/low-energy GES with short pulse stimulation (Lal, et al., 2015; Bortolotti, 2011).

Low-frequency/high-energy GES with long pulse stimulation, also called gastric pacing, uses frequencies close to or above the normal gastric slow wave cycle to reset regular slow wave rhythm. This type of GES involves heavy batteries, is not suitable for implantation and has a variable effect on the symptoms of gastroparesis (Lal, et al., 2015).

High-frequency/low-energy GES with short pulse stimulation (e.g., Enterra™ Therapy) is a type of gastric neurostimulation or neuromodulation (Lal, et al., 2015; Bortolotti, 2011). The device is implanted in the body and delivers high-frequency electrical stimulation at four times the basal rate (12 cycles per minute [cpm]) to the stomach. It is proposed that use of this device reduces the symptoms of gastroparesis such as nausea and vomiting and fosters improved gastric emptying.

Gastric Electrical Stimulation for Gastroparesis

Gastroparesis is a chronic motility disorder of the stomach characterized by gastric retention in the absence of mechanical obstruction. The main causes of gastroparesis are idiopathic, diabetic and postsurgical. Idiopathic gastroparesis refers to gastroparesis of unknown etiology. Diabetic gastroparesis is believed to be caused by chronic hyperglycemia which damages the vagus nerve. Gastroparesis that develops after surgery is called postsurgical gastroparesis (Zoll, et al., 2019; Camilleri, 2018; Pasricha, et al., 2017; Parkman, 2015).

Symptoms of gastroparesis include early satiety, nausea, vomiting, bloating, and upper abdominal discomfort. Postprandial vomiting (1–3 hours after meals) of undigested food is typical. Abdominal discomfort is of varying degrees and is not usually the predominant symptom. Symptoms may be persistent or present as episodic flares. Due to the symptoms, some patients will experience weight loss and malnutrition and, in severe cases, dehydration. There is also an overlap of symptoms with functional dyspepsia (Zoll, et al., 2019; Camilleri, 2018; Parkman, 2015).

The treatment of gastroparesis is guided by the goals of correcting fluid, electrolyte, and nutritional deficiencies; identifying and treating the cause of delayed gastric emptying (e.g., diabetes); and suppressing or eliminating symptoms. Primary medical management for gastroparesis includes dietary modification and pharmacologic therapy with prokinetic (metoclopramide and erythromycin) and antiemetic agents. Patients refractory to treatment are difficult to manage. Treatment may involve changing or combining medications; placement of a gastrostomy or jejunostomy tube for enteral feedings; or in severe cases, total parenteral nutrition (TPN) for brief periods (Zoll, et al., 2019; Camilleri, 2018; Parkman, 2015). Some patients, however, remain refractory to gastroparesis treatment.

Although proposed as a treatment for refractory gastroparesis, the exact mechanism of action of GES is not clearly known. The Enterra™ Therapy System (Medtronic Inc., Minneapolis, MN) is a gastric electrical stimulator. According to the manufacturer, the Enterra Therapy system is composed of a neurostimulator or implanted pulse generator (IPG), two implantable intramuscular leads and an external programming system. The intramuscular stomach leads are implanted laparoscopically on the greater curvature of the stomach. The IPG is implanted in a subcutaneous pocket typically created on the abdomen, and is then connected to the leads. The IPG provides the energy source that delivers the electrical pulse to the stomach muscle through the stomach leads. The generator stimulates the stomach muscle at a set of stimulation parameters determined by the physician (U.S. Food and Drug Administration [FDA], 2000b). The electrical stimulation produced by this device stimulates the stomach to contract and helps control the symptoms associated with gastroparesis, including nausea and vomiting (Medtronic Inc., 2018).

U.S. Food and Drug Administration (FDA): The Enterra Therapy System (Medtronic Inc., Minneapolis, MN) is a GES which received FDA marketing approval as a Class III medical device under the Humanitarian Device Exemption (HDE) on March 31, 2000. It is indicated for the treatment of chronic, intractable (drug refractory) nausea and vomiting secondary to gastroparesis of diabetic or idiopathic etiology. This system has not been evaluated for patients under age 18 or over age 70 (FDA, 2000b). According to the FDA, a humanitarian use device (HUD) is a device that is intended to benefit patients by treating or diagnosing a disease or condition that
affects fewer than 4000 individuals in the United States per year. An HDE application is not required to contain the results of scientifically valid clinical investigations demonstrating that the device is effective for its intended purpose. However, the application, must contain sufficient information for the FDA to determine that the device does not pose an unreasonable or significant risk of illness or injury, and that the probable benefit to health outweighs the risk of injury or illness from its use, taking into account the probable risks and benefits of currently available devices or alternative forms of treatment. Additionally, the applicant must demonstrate that there are no comparable devices available to treat or diagnose the disease or condition, and that they could not otherwise bring the device to market (FDA, 2018).

Literature Review: The evidence in the published peer-reviewed medical literature examining the safety and effectiveness of permanent GES for the treatment of gastroparesis primarily consists of observational studies and case series and few randomized control trials (RCTs). A 2018 Hayes Medical Technology Directory report evaluated the evidence (n=12 studies) on GES for the treatment of gastroparesis. The report evaluated three randomized crossover trials, six pretreatment/posttreatment studies, one nonrandomized comparative study, one comparative cohort study, and one compilation of case series. Study sample sizes ranged from 18–233 patients. Patients were selected who had symptomatic gastroparesis refractory to medical treatment with diagnoses of diabetic gastric neuropathy or idiopathic gastroparesis. All patients underwent permanent implantation of a Medtronic Enterra GES system. In all of the reviewed studies, GES was used in conjunction with conventional treatments for gastroparesis, such as prokinetic and antiemetic drugs. The studies evaluated the efficacy and safety of GES for treatment of gastroparesis. The follow-up timeframe varied among studies, the longest follow-up being 4.7 years. The report found low quality evidence indicating that GES may improve gastroparesis symptoms and gastric emptying as well as decrease the need for nutritional support in some patients with refractory gastroparesis. However, GES was found to be safe with the device removal rate ranging from 7%–12% primarily related to stimulator implantation and shifting of the stimulator or electrical leads after implantation. It was noted that despite the low quality of the supportive evidence, GES may be an option for patients with debilitating gastroparesis that is refractory to medical treatment.

McCallum et al. (2010) conducted a prospective, multicenter, double-blinded, randomized cross-over study (n=55) to evaluate the safety and efficacy of the Enterra gastric stimulation system in the treatment of intractable (drug-refractory) nausea and vomiting secondary to gastroparesis of diabetic etiology. The primary outcome measure was the reduction in weekly vomiting frequency when the device was turned on, relative to when the device was turned off during the blinded cross-over phase. Post-implantation, all patients had the stimulator turned on for six weeks and then were randomly assigned to groups that had consecutive three-month cross-over periods with the device on or off. After this period, the device was turned on in all patients with un-blinded follow-up for four months. Of the 55 subjects enrolled and implanted, 10 were not randomized. A total of 43 subjects completed the cross-over phase and 39 subjects completed 12-month visit follow up. Device-related adverse events included lead migration or dislodgements (n=3), device migrations (n=2), an implant site hematoma, and one implant site infection. The weekly vomiting frequency at 12 months decreased significantly when compared to baseline, with a median reduction of 67.8% (p<0.001). Gastric emptying was significantly improved at 12 months with a median retention at four hours of 20.5% compared with 46.5% at baseline (p<0.001). Although there were no statistical differences observed in the cross-over period, weekly vomiting frequency was reported to be somewhat better controlled during the on state than the off state. Study limitations include small sample size and loss to follow-up.

O’Grady et al. (2009) performed a meta-analysis of 13 studies evaluating GES for the treatment of medically refractory gastroparesis. Uncontrolled observational studies (n=12) and one blinded randomized control trial (RCT) (Abell, et al., 2003) were included. The findings reported from this review were that following GES, patients had statistically significant improvements in total symptom severity score (p=0.01), vomiting severity score (p<0.0001), and nausea severity score (p<0.0001). The device removal or reimplantation rate was 8.3%.

Case series, retrospective reviews and cohort studies with patient populations ranging from 9–214 support the findings that GES may significantly improve upper GI symptoms and reduce the need for nutritional support in some patients with refractory diabetic or idiopathic gastroparesis (Laine, et al., 2018; Shada, et al., 2018; Klinge, et al., 2017; Heckert, et al., 2016; McCallum, et al., 2011; Maranki, et al, 2008; Anand, et al., 2007; McCallum, et al., 2005).
Temporary GES: Temporary GES or percutaneous stimulation has been investigated as a potential method for a less invasive trial prior to permanent GES insertion, but has not been proven. Use of endoscopically placed temporary stimulating electrodes has been proposed to help predict who might respond to a permanently implanted device. With this technique, a cannula with an internal needle is introduced through the skin and into the gastric submucosal region. A self-anchoring electrode is then placed through the needle. This method has been used to deliver electrical stimuli for up to eight weeks in patients with gastroparesis. Electrodes that can be placed during percutaneous gastrostomy placement have also been utilized (Hasler, 2019).

Literature Review: There is a paucity of studies in the published peer-reviewed medical literature evaluating temporary GES for gastroparesis or any other indication. Singh et al. (2015) published the results of a cohort study (n=551) which aimed to clarify the role of GES in gastroparesis-like syndrome (GLS), defined as gastroparesis-like symptoms with normal gastric scintigraphy. Inclusion criteria were as follows:

- gastroparesis symptoms of diabetic, surgically related or idiopathic etiology
- aged 18–70 years old
- symptoms of gastroparesis for ≥ one year
- refractory or intolerant to prokinetic and antiemetic drug classes
- chronic vomiting or nausea or severe dyspepsia like syndrome consistent with gastroparesis irrespective of gastric emptying test (GET) values

Patients were excluded if they were not candidates for endoscopic or surgical procedures or were pregnant. A total of 452 patients underwent gastric scintigraphy and were stratified into: delayed gastric emptying (n=273), normal gastric emptying (n=137), and rapid gastric emptying categories (n=42). Of the 551 patients in the larger cohort, 379 had tGES implantation. Outcomes measured were changes in gastric scintigraphy and total symptom score. After tGES, two-hour gastric retention decreased for the delayed patients (p<0.01), and increased for normal and rapid patients (p<0.001). These changes were accompanied by improvements (p<0.001) in vomiting, nausea, and total symptom scores in all three subgroups. Study limitations include the uncontrolled study design and the possibility of the treatment benefit being due to a placebo effect. Although study results suggest that tGES may be effective for treating GLS, well-designed RCTs are need to support these findings.

Abell et al. (2011) published the results of a randomized, placebo-controlled, crossover trial (n=58) to measure the effects of endoscopically placed temporary GES (tGES) on gastroparesis symptoms. The study consisted of two consecutive, 4-day sessions (session 1 and session 2). Inclusion criteria were as follows:

- patients between the ages of 18 and 70 years, with a ≥ one-year history of gastroparesis symptoms from diabetic (n=13), postsurgical (n=7), or idiopathic (n=38) etiology
- gastroparesis symptoms refractory or intolerant to antiemetic drug classes with ≥ seven episodes of chronic vomiting and/or nausea per week, irrespective of gastric emptying time values

Patients with an active infection or pregnancy were excluded. Temporary GES was provided to 37/58 enrolled patients (group A [n=21]; group B [n=16]). During session 1 treatment was activated for 72 continuous hours in group A, and likewise activated in group B during session 2. The primary outcome measure was a 50% improvement in baseline symptom values. Secondary outcomes were gastric emptying, electrogastrography, and quality of life measured at baseline and session close. An overall treatment effect of a slight, non-significant daily decrease in average vomiting scores (p=0.116) was observed by pooling stimulation effects across sessions. The single reported adverse event was dislodged electrodes for six patients in group A and seven in group B. Study limitations include the small sample size and the fact that patients were allowed to continue medication for nausea or pain (prokinetics, anti-emetics) during the trial. The small sample size and non-significant improvement in symptoms make it difficult to draw conclusions from this study.

Gastric Electrical Stimulation for Other Indications
The use of GES is currently under investigation for the treatment of obesity and type 2 diabetes mellitus (T2DM).
Obesity: GES has been proposed as a device therapy for the treatment of morbid obesity. GES for obesity is currently registered by the FDA as investigational. In Europe, however, GES is being used clinically to treat obesity. Transneuronix, Inc., (Mt. Arlington, NJ), acquired in 2005 by Medtronic Inc. (Minneapolis, MN), developed the Transcend™ Gastric Stimulation System for obesity. This implantable gastric stimulator (IGS) has not been approved by the FDA. The device includes a pulse generator, an external programmer and a gastric stimulation lead, and is implanted laparoscopically in the subcutaneous tissue. The Transcend is intended to induce satiety by delaying gastric emptying (Greenway and Zheng, 2007).

A number of unresolved issues regarding the use of GES for treatment of obesity have been identified. The mechanism of action is unclear. Proposed possibilities include: a local enteric nervous system effect, an effect mediated by the autonomic nervous system, possible central nervous system changes and neurohormonal changes. Optimal stimulation patterns are unknown, as is the importance of the number of leads and the location of electrodes. Optimal screening of patients for GES for obesity has not yet been determined. Also, the best combination of behavioral, drug, device and surgical therapies has not been determined (Abell, et al., 2006). As a result, the use of a gastric pacing device for these indications remains under investigation.

Literature Review: GES for the treatment of obesity has been evaluated in case series, randomized controlled trials (RCTs) and systematic reviews. Cha et al. (2014) performed a systematic review (n=31 studies/1367 patients) of the evidence to evaluate the effect of different types of gastric electrical stimulation (GES) on obesity. Published studies investigating the effect of GES using the Tantalus and Transcend devices, as well as vagus nerve stimulation, were included. Exclusion criteria for published studies were GES used for diseases other than obesity (e.g., gastroparesis); non-gastric stimulation, and non-clinical primary outcome. Studies were primarily non-randomized, with 4/31 randomized trials. In all studies, the generator was externalized and in most cases they were implanted in subcutaneous layers of the anterior abdominal wall. The electrodes connected to the generator were implanted in different locations of the stomach, depending on the type of GES. The primary outcome was weight loss, with secondary outcomes of appetite or satiety changes and biochemical marker changes. Almost all studies in each device group achieved statistically significant weight loss during the first 12 months. Only a small percentage of studies had a follow-up longer than one year, and found significant weight loss maintenance. Findings were inconsistent for secondary outcomes. Gastric penetration was the most common device-related complication. In general, the level of evidence was found to be low with few studies having a large population and low loss to follow-up. Results of studies in this systematic review suggest that GES may be effective for short-term weight loss. However well-designed studies with larger patient population and long-term follow up are needed to determine safety and effectiveness of the technology for this indication.

Shikora et al. (2009) conducted a randomized, double-blinded, placebo-controlled study (n=190), the Screened Health Assessment and Pacer Evaluation (SHAPE) trial. The SHAPE study compared gastric stimulation therapy (n=96) to a standard diet and behavioral therapy regimen (n=94) in a group of obese patients. Subjects were required to be 18–65 years of age and have a BMI of 35–55 kg/m². Exclusion criteria included pregnancy, previous gastrointestinal bariatric surgery, the presence of other electrostimulation devices (e.g., pacemakers), gastrointestinal motility disorders, peptic ulcer disease, and clinically significant comorbidities such as poorly controlled diabetes. Follow-up occurred monthly for 12 months. The difference in excess weight loss (%EWL) between the control group and the treatment group was not found to be statistically significant (p=0.717) at 12 months of follow-up. These results suggest that this technology is not effective in achieving significant weight loss in severely obese individuals.

Shikora (2004) reported an update of two U.S. clinical trials for gastric stimulation in obesity. The first was an RCT in 2000 that included patients (n=103) age 18–50 who had a BMI of 40–55 kg/m² (mean 46 kg/m²). No statistical difference in the weight loss between study and control groups was found at six-month follow-up. At 29 months, the overall mean EWL increased to > 12.0%. A total of 69 patients were lost to follow-up. These results suggest that this technology is not effective in achieving significant weight loss in severely obese individuals.

The second trial (n=30), the Dual-Lead Implantable Gastric Electrical Stimulation Trial (DIGEST), was a non-randomized, open-label study of patients with a BMI 40–55 kg/m² or 35–39 kg/m² and one or more significant comorbidities. At the 12-month follow-up point, 71% of participants lost weight (54% lost > 10% of excess, and 29% lost > 20% excess). At the 16-month follow-up, mean EWL was 23%.
Several case series (n=11–91 patients) have investigated the implantation of GES for the treatment of obesity reporting varying rates of excess weight loss and improvement of comorbidities (Bohdjalian, et al., 2006; Miller, et al., 2006; Cigaina, et al., 2003). In addition to the lack of randomization, in general studies have been limited by small sample sizes and short-term follow-up.

There is insufficient evidence in the published scientific literature to support the use of gastric pacing for the treatment of morbid obesity.

Type 2 Diabetes Mellitus (T2DM): The effect of GES on HbA1c and blood glucose levels, along with changes in body weight is also being investigated. The DIAMOND® (Diabetes Improvement and MetabOlic Normalization Device), formerly known as the TANTALUS device, has been developed by MetaCure, Inc. (Kfar-Saba, Israel). The DIAMOND device consists of three pairs of bipolar electrodes. One pair is attached to the gastric fundus and the other two pairs are attached to the anterior and the posterior antrum of the stomach. The electrodes are implanted laparoscopically and connected to a pulse generator inserted into the subcutaneous tissue of the abdomen. The pulse generator uses a rechargeable battery as an external power source. The delivered electrical signal characteristics are set by a programmer within the first week after the implantation (Lebovitz, et al., 2015). Clinical trials are now being conducted using this device for overweight and obese patients with type 2 diabetes.

Literature Review: The evidence in the published peer-reviewed medical literature examining the safety and effectiveness of GES for obese patients with T2DM consists of few case series (Lebovitz, et al., 2015; Bohdjalian, et al., 2009; Policker, et al., 2009; Sanmiguel, et al., 2009). Patient populations in these studies have ranged from 14–61, with a follow-up of primarily six–12 months. Although preliminary results suggest that GES may improve glycemic control and induce weight loss in patients with T2DM, additional evidence in the form of well-designed RCTs is needed to confirm these findings.

Professional Societies/Organizations

American College of Gastroenterology (ACG): The ACG published guidelines stated that gastric electrical stimulation may be considered for compassionate treatment in patients with refractory symptoms such as nausea and vomiting. Symptom severity and gastric emptying have been shown to improve in patients with diabetic gastroparesis (Camilleri, et al., 2013).

National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK): The NIDDK stated that gastric electrical stimulation may be effective for some people whose nausea and vomiting do not improve with dietary changes or medications (NIDDK, 2018).

Centers for Medicare & Medicaid Services (CMS)
- National Coverage Determinations (NCD): No NCD found
- Local Coverage Determination (LCD): No LCD’s found

Use Outside of the US
The National Institute for Health and Care Excellence (NICE) (United Kingdom) issued a statement in 2014 which supported the use of gastric electrical stimulation for gastroparesis. NICE stated that “current evidence on the efficacy and safety of gastric electrical stimulation for gastroparesis is adequate to support the use of this procedure with normal arrangements for clinical governance, consent and audit” (NICE, 2014).

Coding/Billing Information

Note:
1) This list of codes may not be all-inclusive.
2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Intractable Nausea and Vomiting Secondary to Gastroparesis:

Considered Medically Necessary when criteria in the applicable policy statements listed above are met:
<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>43647</td>
<td>Laparoscopy, surgical; implantation or replacement of gastric neurostimulator electrodes, antrum</td>
</tr>
<tr>
<td>43881</td>
<td>Implantation or replacement of gastric neurostimulator electrodes, antrum, open</td>
</tr>
<tr>
<td>64590</td>
<td>Insertion or replacement of peripheral or gastric neurostimulator pulse generator or receiver, direct or inductive coupling</td>
</tr>
<tr>
<td>95980</td>
<td>Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient measurements) gastric neurostimulator pulse generator/transmitter; intraoperative, with programming</td>
</tr>
<tr>
<td>95981</td>
<td>Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient measurements) gastric neurostimulator pulse generator/transmitter; subsequent, without reprogramming</td>
</tr>
<tr>
<td>95982</td>
<td>Electronic analysis of implanted neurostimulator pulse generator system (eg, rate, pulse amplitude and duration, configuration of wave form, battery status, electrode selectability, output modulation, cycling, impedance and patient measurements) gastric neurostimulator pulse generator/transmitter; subsequent, with reprogramming</td>
</tr>
</tbody>
</table>

Any Other Indication:

Considered Experimental/Investigational/Unproven when used to report temporary gastric electric stimulation, open or laparoscopic implantation or replacement of gastric stimulation electrodes, lesser curvature (i.e., morbid obesity):

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>43659</td>
<td>Unlisted laparoscopy procedure, stomach</td>
</tr>
<tr>
<td>43999</td>
<td>Unlisted procedure, stomach</td>
</tr>
</tbody>
</table>

References

