Medical Coverage Policy

Effective Date: 12/15/2019
Next Review Date: 12/15/2020
Coverage Policy Number: 0350

Vagus Nerve Stimulation (VNS)

Overview

This Coverage Policy addresses the indications for use of an implantable vagus nerve stimulator (VNS) and a non-implantable transcutaneous VNS (tVNS) stimulator for the treatment of medically intractable seizures and as a treatment of other indications.

Coverage Policy

Vagus nerve stimulation (VNS) with an implantable vagus nerve stimulator is considered medically necessary for the treatment of medically intractable seizures when there is failure, contraindication or intolerance to all suitable medical and pharmacological management.

The replacement/revision of an implantable vagus nerve stimulator and/or leads is considered medically necessary for the treatment of medically intractable seizures when a previously implanted VNS is no longer functioning appropriately.

VNS with an implantable vagus nerve stimulator is considered experimental, investigational or unproven for any other indication including, but not limited to, refractory depression.
Transcutaneous vagus nerve stimulation (tVNS) is considered experimental, investigational or unproven for any indication.

General Background

Implantable Vagus Nerve Stimulator for Vagus Nerve Stimulation (VNS)
Implantable vagus nerve stimulation (VNS) therapy has been marketed in the United States for the treatment of partial epilepsy and has been proposed for the treatment of patients with intractable depression. VNS therapy is contraindicated for use in patients after a bilateral or left cervical vagotomy. The most common complications associated with VNS therapy are hoarseness, voice alterations, cough, pain, dyspnea, paresthesia, headache, and pharyngitis. VNS involves the implantation of a generator that stimulates the vagus nerve, one of 12 pairs of cranial nerves. No special credentials aside from a license to practice medicine are required to implant a VNS device. It is recommended that the implantation procedure be performed by an experienced neurosurgeon who is familiar with performing surgery in the carotid sheath and familiar with vagal anatomy, particularly the cardiac branches. Surgeons should also be trained for surgical implantation of the device. The VNS device consists of a programmable generator that is implanted subcutaneously into the patient's chest and delivers pulses of current via electrodes attached to the vagus nerve in the left side of the neck (Hayes, 2014).

VNS Treatment for Seizures

U.S. Food and Drug Administration (FDA): The NeuroCybernetic Prosthesis (NCP) System® (LivaNova, USA, Inc., Houston, TX) was approved by the U.S. Food and Drug Administration (FDA) in 1997 for use as an adjunctive therapy in reducing the frequency of seizures in adults and adolescents over age 12 with medically refractory, partial-onset seizures. Since the original approval, there have been a number of modifications to the device, the instruments used to implant the electrodes, the stimulator, and the software used to control and program the stimulator. In a June 2017 approval order, the NeuroCybernetic Prosthesis (NCP) System® is indicated for use as an adjunctive therapy in reducing the frequency of seizures in patients 4 years of age and older with partial onset seizures that are refractory to antiepileptic medications (P970003/S207).

Literature Review: Evidence in the peer-reviewed scientific literature have shown that VNS may be a viable option to reduce the severity and shorten the duration of seizures in those patients who remain refractory despite optimal drug therapy or surgical intervention, as well as in those with debilitating side effects of antiepileptic medications. Seizure frequency is usually reduced by 50%, which is similar to the result of many drugs but without the side effects. Most patients are not seizure-free after treatment with VNS. More recent studies have investigated the efficacy of VNS as an adjunct therapy for those epileptics with generalized seizures and for children. There is evidence that the use of VNS may provide significant health benefits for refractory pediatric patients and generalized seizures (Ryvlin, et al., 2014; Klinkenberg, et al., 2012; Ardesch, et al., 2007; De Herdt, et al., 2007; You, et al., 2007; Nei, et al., 2006; DeGiorgio et al., 2005; Hui et al., 2004; Buoni, et al., 2004; Smyth, et al., 2003; Labar et al., 2003; DiGiorgio, et al., 2002; Zamponi, et al., 2002).

Professional Societies/Organizations: The American Academy of Neurology (AAN) evidence-based guideline update: Vagus nerve stimulation for the treatment of epilepsy evaluates the evidence since the 1999 assessment regarding efficacy and safety of vagus nerve stimulation (VNS) for epilepsy. The recommendations state, “VNS may be considered for seizures in children, for Lennox-Gastaut syndrome (LGS)-associated seizures, and for improving mood in adults with epilepsy (Level C). VNS may be considered to have improved efficacy over time (Level C). Children should be carefully monitored for site infection after VNS implantation” Level C is classified as possibly effective, ineffective or harmful (or possibly useful/predictive or not useful/predictive) for the given condition in the specified population. The authors recommendations for further research state that more information is needed on the treatment of primary generalized epilepsy in adults, more information is needed about parameter settings (e.g., cycle time length) would potentially help with better VNS management and use, techniques to reduce infection risk at the VNS site in children should be developed and further information is needed on the effects of VNS on sleep apnea (Morris, et al., 2013).

In the opinion of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (AAN) (Fisher, et al., 1999), the VNS population studied in pivotal trials was refractory to standard therapy and may, therefore, present a particular challenge to new therapies. Efficacy of VNS in less severely
affected populations remains to be evaluated. Nevertheless, sufficient evidence exists to rank VNS for epilepsy as effective and safe, based on a preponderance of Class I evidence (Fisher et al., 1999). This statement was reaffirmed in 2003.

VNS Treatment for Depression

There are treatment modalities for which there is substantial evidence of effectiveness in the treatment of a major depressive episode (MDE): pharmacotherapy with antidepressant drugs (ADDs), specific forms of psychotherapy (e.g., cognitive behavior and interpersonal therapy), transcranial magnetic stimulation (TMS) and electroconvulsive therapy (ECT). ADDs are the usual first-line treatment for depression. Clinical trials have demonstrated efficacy for a number of pharmacologic classes of ADDs. Physicians usually reserve ECT for treatment-resistant cases or when they determine a rapid response to treatment is desirable. For those patients who do not respond to initial antidepressant treatment, physicians generally use one or more of the following strategies: 1) switching to an alternative first-line ADD; 2) switching to a second line ADD; 3) adding psychotherapy, a second ADD, or an augmentation agent (not generally considered to have significant antidepressant activity when administered alone). Additional options for treatment-resistant patients, especially for patients who fail on the above alternatives, include monoamine oxidase inhibitors and ECT. For treatment-resistant cases that exhibit a marked seasonal pattern, adding phototherapy to pharmacotherapy may also be an option (FDA, 2005). VNS has been proposed as an adjunct therapy in patients with major depressive disorder or bipolar disorder.

U.S. Food and Drug Administration (FDA): In July 2005, the VNS Therapy system received FDA premarket approval (PMA) with limitations. The VNS Therapy System was approved to be used to treat depression for the following indications: “the VNS Therapy System is indicated for the adjunctive long-term treatment of chronic or recurrent depression for patients 18 years of age or older who are experiencing a major depressive episode and have not had an adequate response to four or more adequate antidepressant treatments.” The FDA limitations stated that post-approval studies must be conducted to further characterize the optimal stimulation dosing and patient selection criteria (FDA, 2005).

Literature Review: Studies supporting the use of the vagus nerve stimulation (VNS) System in subjects with treatment-resistant depression (TRD) include: a feasibility trial (Rush, et al., 2000) (referred to in the FDA summary of safety and effectiveness data documentation as D-01); a randomized, sham-controlled three-month clinical trial (Carpenter, et al., 2004; Rush et al., 2005a) (referred to in the FDA summary of safety and effectiveness data documentation as D-02, acute); a long-term (12- and 24-month) open-label extension (Rush, et al., 2005b) (referred to in the FDA summary of safety and effectiveness data documentation as D-02, long-term); and a long-term (12-month) observational study of subjects receiving standard-of-care treatments (D-04) for comparison to D-02 long-term (George, et al., 2005) (referred to in the FDA summary of safety and effectiveness data documentation as the D-02/D-04 comparison study) (FDA, 2005). These studies are outlined below. Although some studies suggest that VNS may be effective for resistant depression, a random-controlled trial did not find a statistically significant difference between sham and active VNS (Rush, et al., 2005a, Rush, et al., 2005b). Long-term, controlled trials and additional studies designed to identify patient selection criteria are needed. The current available evidence is insufficient to permit conclusions regarding the efficacy and safety of VNS as an adjunct therapy in TRD and bipolar disorder.

Aaronson et al (2017) reported long-term outcomes from the five-year post-marketing surveillance study of individuals with treatment resistance depression treated with VNS or “treatment as usual.” The prospective, open-label, nonrandomized, observational registry study, was conducted at 61 U.S. sites. The study included a total of 795 patients who were experiencing a major depressive episode (unipolar or bipolar depression) of at least two years’ duration or had three or more depressive episodes (including the current episode), and who had failed four or more depression treatments (including ECT). Patients with a history of psychosis or rapid-cycling bipolar disorder were excluded. The primary efficacy measure was response rate, defined as a decrease of ≥50% in baseline Montgomery Åsberg Depression Rating Scale (MADRS) score at any post baseline visit during the five-year study. Secondary efficacy measures included remission. Patients had chronic moderate to severe depression at baseline (the mean MADRS score was 29.3 [SD=6.9] for the treatment-as-usual group and 33.1 [SD=7.0] for the adjunctive VNS group). The registry results indicate that the adjunctive VNS group had better clinical outcomes than the treatment- as-usual group, including a significantly higher five-year cumulative response rate (67.6% compared with 40.9%) and a significantly higher remission rate (cumulative first-time
remitters, 43.3% compared with 25.7%). A sub-analysis demonstrated that among patients with a history of response to ECT, those in the adjunctive VNS group had a significantly higher five-year cumulative response rate than those in the treatment-as-usual group (71.3% compared with 56.9%). A similar significant response differential was observed among ECT nonresponders (59.6% compared with 34.1%). The naturalistic, observational study design did not allow for random assignment of participants to treatment groups; thus, participants were not blinded to treatment. A significant number of participants in both groups withdrew early from the study. Of the 358 patients (45%) who withdrew early, 195 were from the VNS arm (40%) and 163 were from the treatment-as-usual arm (54%). The reasons for early withdrawal were similar between the treatment arms. The significantly higher treatment response rate observed in the VNS arm may represent a treatment effect, as participants with an implanted device may have had a higher expectation of therapeutic improvement.

In a case series study, Cristancho et al. (2011) reported the outcomes of depressed patients treated with VNS. A total of 15 patients with treatment-resistant major depressive episodes, including 10 with major depressive disorder and five with bipolar disorder (DSM-IV criteria), were implanted with a VNS device. Existing antidepressant treatment remained fixed as far as clinically possible. The primary outcome was change from baseline in the Beck Depression Inventory (BDI) score. Outcomes were assessed at six and 12 months postimplant. The six-month response rates were 21.4%, six-month remission rates 14.3% and one-year response rates were 28.6-43%. This study was limited by small sample size and lack of a comparator group.

In an uncontrolled open-label multicenter European study, Bajbouj et al. (2010) assessed the efficacy and the safety of VNS in 74 patients with TRD. Psychometric measures were obtained after three, 12, and 24 months of VNS. Mixed-model repeated-measures analysis of variance revealed a significant reduction at all the three time points in the 28-item Hamilton Rating Scale for Depression (HRSD28) score, the primary outcome measure. After two years, 53.1% (26/49) of the patients fulfilled the response criteria (≥50% reduction in the HRSD28 scores from baseline) and 38.9% (19/49) fulfilled the remission criteria (HRSD28 scores ≤10). The proportion of patients who fulfilled the remission criteria remained constant as the duration of VNS treatment increased. Voice alteration, cough, and pain were the most frequently reported adverse effects. Two patients committed suicide during the study; no other deaths were reported. No statistically significant differences were seen in the number of concomitant antidepressant medications. According to the investigators, the results of this two-year open-label trial suggest a clinical response and a comparatively benign adverse effect profile among patients with TRD. The lack of a control group limits the validity of the results of this study. This study extends the findings in the Schlaepfer et al. (2008) study.

Schlaepfer et al. (2008) reported the results of an uncontrolled open-label European study of VNS for TRD (D03) which was conducted to determine if the USA results (D01) could be replicated using a similar study design in a different patient population with different severity and in a different health-care environment. Seventy-four patients with TRD were enrolled from six European countries. The primary outcome was response rate which was defined as a ≥50% reduction in the 28-item Hamilton Depression Rating Scale (HAM-D-28) was measured at baseline, three months and 12 months. The Montgomery-Asberg Depression Rating Scale (MADRS), the Inventory of Depressive Symptomatology Self-Rated (IDS-SR), and adverse events were also assessed at baseline, three months, and 12 months. After three months of VNS, the response rate was 37% and the remission rate (HAM-D-28 score <10) was 17%. At one year, the response rate increased to 53% and the remission rate was 33%. Median time to response was nine months. The most frequent side effects were voice alteration and cough. Most of the efficacy ratings were in the same range as those reported in the USA study. At 12 months, however, the reduction of symptoms was significantly higher in the European study. This may be due to the significant difference in baseline measures of depression (HAM-D-28) (D03 34.0±5.8 vs. D01 36.8±5.8; p=0.006). The authors reported that VNS may be effective in patients with very treatment resistant depression, but could not assess the contribution of the placebo effect on the results. The limitations of this study, including lack of control, blinding and randomization, did not allow definitive determinations to be made regarding the safety and efficacy of VNS for TRD at this time.

Corcoran et al. (2006) studied the safety and efficacy of VNS therapy in 11 patients with chronic TRD in an open-label study. Patients were eligible if they had the following: a diagnosis of major depressive disorder; suffered from a chronic (>2 years) current episode; scored ≥ 20 on the Hamilton Rating Scale for Depression (HRSD); and failed to respond to antidepressants from at least two categories. There were two periods studied—the acute phase (12 weeks), which started two weeks after implantation, and the long-term phase (40 weeks). No changes
in antidepressant medications were allowed during the acute phase, but changes were allowed during the long-term phase. Patients were rated on three different rating scales: HRSD, Montgomery-Asberg Depression Rating Scale (MADRS), and Inventory of Depressive Symptomatology-Subjective Rating (IDS-SR). Response was defined as a ≥ 50% decrease in the HRSD from baseline, and remission was defined as an HRSD score < 10. All three measures of depression were statistically reduced at one year when compared to baseline (HDRS p=0.001, MADRS p=0.013, IDS-SR p=0.002). There was one responder at three months, two at six months, and six (55%) at one year. Three patients (27%) remitted by one year. Severe adverse events included one suicide (a treatment nonresponder), one patient with multiple occurrences of pulmonary emboli, and two patients with vocal cord palsies. This study suggests that vagus nerve stimulation (VNS) may be an effective treatment for patients with chronic treatment-resistant depression (TRD). Limitation of this study included small sample size, lack of comparison, and the unknown impact of the medication adjustments made during the long-term phase.

In 2005, Nahas and colleagues reported the response and remission rates of a two-year follow-up study of 59 participants with treatment-resistant, nonpsychotic depressive disorders (D-01 study participants). Response was defined as a ≥ 50% reduction from baseline of the HRSD score, and remission was defined as a Hamilton Rating Scale for Depression (HRSD) score ≤ 10. Changes in treatment, including VNS parameters, medication dose and type, and the use of electroconvulsive therapy were allowed after the 12-week acute phase. Response rates did not significantly increase from 30.5% at three months to 44.1% at 12 months (p=0.096), nor did they decrease significantly to 42.4% at 24 months (p=.648). Remission rates showed a nonsignificant increase from 15.3% at three months to 27.1% at 12 months (p=.07) and a nonsignificant decrease to 22.0% from 12 to 24 months (p=.549). At 24 months, 48/59 participants (81%) were still receiving VNS. In the 24 months following initiation of stimulation, 40 serious adverse events occurred in 25 participants and included three for suicide attempts, 10 for worsened depression, one for dysphoria, two for a manic episode, one for agitation, and one for central nervous system toxicity. The follow-up data suggests that VNS therapy for treatment-resistant participants may be sustained over a 24-month period. This study is limited by the small sample size, the lack of control and comparator, and the use and changes in concomitant treatments.

Rush et al. (2005a) conducted a randomized, double-blind study (D-02, acute) of patients with treatment-resistant depression at 21 sites. A total of 222 participants were included; 112 were randomized to the active VNS group, and 110 were randomized to the sham VNS group. Inclusion criteria consisted of a current Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) primary diagnosis of major depressive disorder (MDD) or bipolar I or II disorder (BPI or BPII). The participants were required to be in the current major depressive episode (MDE) for ≥ two years or to have had at least four lifetime major depressive episodes, including their current MDE. Results were based on response rates (≥ 50% reduction from baseline on the 24-item Hamilton Rating Scale for Depression [HRSD-24]). At ten weeks, the primary outcome, the HRSD-24 response rate, was 15.2% in the active VNS group and 10.0% in the sham group and was statistically insignificant. There was a statistically significant response in the Inventory of Depressive Symptomatology - Self Report (IDS-SR30), with a 17% response rate in the active VNS group and 7.3% in the sham group. The authors summarized that, although the VNS therapy was well-tolerated, there was no evidence of short-term efficacy for adjunctive VNS in treatment-resistant depression.

Rush et al. (2005b) conducted a 12-month study (D-02, long-term) of the symptomatic outcomes in patients receiving adjunctive VNS. Participants included in this study had been randomized to receive either active or sham VNS during a 12-week acute phase trial (D-02, active) (Rush et al., 2005a). The initial active VNS group received another nine months of VNS, while the initial sham group received 12 months of VNS. In total, there were 205 evaluable participants. The participants received antidepressant treatments and VNS. Changes in type or dose of any psychotropic or other medication as well as the introduction or discontinuation of somatic treatments (e.g., ECT and rTMS) or psychotherapy were allowed. The primary outcome (repeated measures linear regression) showed a reduction in the HRSD-24 scores (average improvement of 0.45 points per month). At conclusion of the study, the HRSD-24 response rate was 27.2%, and remission was 15.8%. The most common were voice alteration, dyspnea, and neck pain. Of the 205 participants, there were three reports of manic syndrome over the 12 months of this study, as well as 30 participants requiring hospitalization for depression. The authors reported that VNS was well-tolerated at one year with a potential benefit, although changes in depression treatments occurred. To determine if these benefits are due to VNS, long-term, comparative studies are needed.
George et al. (2005) reported a one-year comparison study of VNS of patients who had treatment as usual (TAU) for TRD to better understand the effects on long-term outcome (D-02/D04 comparison study). The authors compared 12-month VNS+TAU outcomes to those of a comparable TRD group. Admission criteria were similar for those receiving VNS+TAU (n=205) or only TAU (n=124). In the primary analysis, repeated measures of linear regression were used to compare the VNS+TAU group (monthly data) to the TAU group (quarterly data) according to scores of the 30-item Inventory of Depressive Symptomatology Self Report (IDS-SR 30). The two groups had similar baseline demographic data, psychiatric treatment histories, and degrees of treatment resistance, except that more TAU participants had at least 10 prior MDEs, and the VNS+TAU group had more ECT before study entry. VNS plus TAU was associated with greater improvement per month in IDS-SR (30) than treatment as usual (TAU) across 12 months (p<.001). Response rates, according to the 24-item Hamilton Rating Scale for Depression (HRSD) (last observation carried forward) at 12 months, were 27% for vagus nerve stimulation (VNS)+TAU and 13% for TAU (p<.011). Both groups received similar TAU (drugs and ECT) during follow-up. The authors reported that the comparison of two similar but nonrandomized treatment-resistant depression (TRD) groups showed that VNS+TAU was associated with a greater antidepressant benefit over 12 months.

Neu et al. (2005) reported a randomized controlled trial conducted to investigate if VNS has an influence on cerebral blood flow (CBF) in humans. This investigation was designed as an add-on study (DO1; Rush, 2000). In 10 patients with an implanted stimulator who participated in a multicenter clinical trial to evaluate the efficacy of VNS in depression, CBF was investigated by functional transcranial Doppler at baseline (before the stimulator was turned on for the first time) and during stimulation with three different stimulation intensities in a randomized order. No significant change of CBF above standard deviation could be registered. The authors reported that VNS does not have an influence on CBF velocity in depressive patients.

Carpenter et al. (2004) (partial results DO2 randomized controlled trial) reported that VNS has shown promising antidepressant effects in TRD, but the mechanisms of action are not known. Cerebrospinal fluid (CSF) studies in epilepsy patients show that VNS alters concentrations of monoamines and gamma aminobutyric acid (GABA), neurotransmitter systems possibly involved in the pathogenesis of depression. Twenty-one adults with treatment-resistant, recurrent, or chronic major depression underwent standardized lumbar puncture for collection of 12 mL CSF on three separate but identical procedure days during participation in the VNS D-02 clinical trial. All subjects remained on stable regimens of mood medications. Concentrations of GABA were assayed by mass spectrometry. Comparison of sham versus active VNS revealed a significant (mean 21%) VNS associated increase in CSF HVA. Mean CSF concentrations of NE, 5-HIAA, HVA, and 3-methoxy-4-hydroxyphenylglycol (MHPG) were determined with high-performance liquid chromatography. Concentrations of GABA were assayed with mass spectrometry. Comparison of sham versus active VNS revealed a significant (mean 21%) VNS associated increase in CSF HVA. Mean CSF concentrations of NE, 5-HIAA, MHPG, and GABA did not change significantly. Higher baseline HVA/5-HIAA ratio predicted worse clinical outcome. The authors reported that although several of the CSF neurochemical effects observed in the VNS study were similar to those described in the literature for antidepressants and ECT, the results did not suggest a supposed antidepressant mechanism of action for VNS.

Marangell et al. (2002) reported a nonrandomized, open-label, single-arm study (DO1) of adults in a treatment-resistant major depressive episode (MDE). This open follow-up study was conducted to determine whether the initial promising effects were sustained, and whether changes in function would be observed. Thirty adult outpatients in a treatment-resistant, nonpsychotic MDE received an additional nine months of VNS treatment following exit from the three-month acute study. Changes in psychotropic medications and VNS stimulus parameters were allowed during this longer term follow-up study. A priori definitions were used to define response (≥50% reduction in baseline HDRS) and remission (HDRS ≤10). The response rate was sustained (40%–46%; p=0.317) and the remission rate significantly increased (17–29%; p<0.045) with an additional nine months of long-term VNS treatment after exit from the acute study (one year total VNS treatment). Significant improvements in function between acute study exit and the one-year follow-up assessment as measured by the Medical Outcomes Study Short Form-36 were observed. The authors reported that longer term VNS treatment was associated with sustained symptomatic benefit and sustained or enhanced functional status in this follow-up study.
Sackeim et al. (2001b) reported a nonrandomized, open-label, single-arm study of VNS in 60 patients with treatment-resistant MDEs. The study aimed to: 1) define the response rate; 2) determine the profile of side effects; and 3) establish predictors of clinical outcome. Participants (DO-1) were outpatients with nonatypical, nonpsychotic major depressive or bipolar disorder who had not responded to at least two medication trials from different antidepressant classes in the current MDE. While on stable medication regimens, the patients completed a baseline period followed by device implantation. A two-week, single-blind recovery period (no stimulation) was followed by 10 weeks of VNS. Of 59 completers (one patient improved during the recovery period), the response rate was 30.5% for the HRSD measure, 34.0% for the Montgomery-Asberg Depression Rating Scale (MADRS) and 37.3% for the Clinical Global Impressions-Improvement index (CGI-I). The most common side effect was voice alteration or hoarseness (55.0%, 33/60), which was generally mild and related to output current intensity. History of treatment resistance was predictive of VNS outcome. Patients who had never received ECT (lifetime) were 3.9 times more likely to respond. Of the 13 patients who had not responded to more than seven adequate antidepressant trials in the current major depressive episode (MDE), none responded, compared to 39.1% of the remaining 46 patients (p<0.0057). The author reports vagus nerve stimulation (VNS) appears to be most effective in patients with low to moderate, but not extreme, antidepressant resistance. Given the finding that VNS is unlikely to be successful as a “last resort” treatment, its role in the care of patients with low to moderate levels of treatment resistance will require careful consideration. Evidence concerning the long-term therapeutic benefits of VNS and tolerability will be critical in determining its role in treatment-resistant depression (TRD).

Sackeim et al. (2001a) reported a prospective, nonrandomized, open-label study to determine whether VNS leads to neurocognitive deterioration. A neuropsychological battery was administered to 27 patients (from DO-1) with TRD before and after 10 weeks of VNS. Thirteen neurocognitive tests sampled the domains of motor speed, psychomotor function, language, attention, memory, and executive function. The authors report that no evidence of deterioration in any neurocognitive measure was detected. Relative to baseline, improvement was found in motor speed (i.e., finger tapping), psychomotor function (i.e., digit symbol test), language (i.e., verbal fluency), and executive functions (i.e., logical reasoning, working memory, response inhibition, or impulsiveness). For some measures, improved neurocognitive performance correlated with the extent of reduction in depressive symptoms, but VNS output current was not related to changes in cognitive performance. The authors state that VNS in TRD may result in enhanced neurocognitive function, primarily among patients who show clinical improvement. Controlled investigation is needed to rule out the contribution of practice effects.

Rush et al. (2000) investigated VNS as delivered by the NeuroCybernetic Prosthesis (NCP) System. The open-label nonrandomized, uncontrolled clinical study (D-01) covered 30 adult outpatients with nonpsychotic treatment-resistant major depressive (n=21) or bipolar I (n=4) or bipolar II (n=5) depressed phase disorders, who had failed at least two robust medication trials in the current MDE while on stable medication regimens. The patients completed a baseline period followed by NCP System implantation. A two-week single-blind recovery period (no stimulation) was followed by 10 weeks of VNS. Results indicated that in the current MDEs (median length=4.7 years), patients had not adequately responded to two (n=9), three (n=2), four (n=6) or five or more (n=13) robust antidepressant medication trials or ECT (n=17). Baseline 28 item Hasegawa’s Dementia Scale (HDS) scores averaged 38.0. Response rates (≥50% reduction in baseline scores) were 40% for both the HDRS28 and the Clinical Global Impressions-Improvement index (CGI-I) (score of 1 or 2) and 50% for the Montgomery-Asberg Depression Rating Scale (MADRS). Symptomatic responses (accompanied by substantial functional improvement) have been largely sustained during long-term follow-up to date. The researchers concluded that these open trial results suggest that VNS has antidepressant effects in TRD. This uncontrolled study was small, without long-term outcome and with no comparison group.

In 2012, Martin et al. reported the results of a systematic review and meta-analysis to evaluate the efficacy of VNS for the treatment of depression. Efficacy was evaluated according to severity of illness and percentage of responders. A total of 14 studies met the selection criteria and were included in the review. The results are mainly based on uncontrolled studies, with small or medium sample sizes and intermediate quality levels. The duration of the randomized controlled trial included was 10 weeks. The meta-analysis of efficacy for uncontrolled studies showed a significant reduction in scores at the Hamilton Depression Rating Scale endpoint, and the percentage of responders was 31.8% ([23.2%-41.8%], p< 0.001). However, the randomized control trial which covered a sample of 235 patients with depression, reported no statistically significant differences between the active intervention and placebo groups. The authors reported that currently, insufficient data are available to
describe VNS as effective in the treatment of depression. Additionally, it cannot be ruled out that the positive results observed in the uncontrolled studies might have been mainly due to a placebo effect.

In 2008, Daban et al. reported the results of a systematic review and meta-analysis to evaluate the safety and efficacy of VNS in TRD. A total of 18 studies were included in the review (six short term and 12 long term studies). Some studies included patients who had already been enrolled in previous studies. Only one study was randomized and therefore, a meta-analysis could not be performed. According to the authors, the current literature suggests that VNS therapy is promising and may have a potential role in the treatment of TRD, but experience and the evidence base are still limited. They also stated that VNS is an invasive treatment involving risk and that although the evidence is weak, it may have a role in the treatment of depressed patients not responding well to medication, particularly those with a chronic, disabling course. The authors reported that large, well-designed studies are needed to confirm the results reported in mainly open studies regarding the efficacy of VNS in major depression.

In 2019 Hayes published a Medical Technology Directory report on vagus nerve stimulation for treatment resistant depression. The evidence evaluation states that low-quality evidence from several observational and uncontrolled studies for treatment with VNS improves depression symptoms in patients with treatment-resistant depression (TRD). There is a lack of consistent supporting evidence of the efficacy of VNS from well-designed randomized controlled trials and a lack of thorough safety data regarding the device, and the substantial burden of TRD. Considering the safety concerns regarding VNS, noninvasive treatments should be exhausted before this option is considered and patients should be specifically informed of the risks and properly followed up. For adults with treatment-resistant rapid-cycling bipolar disorder (BPD) there is a very-low-quality and insufficient evidence base for this patient population. The future outlook section of the report states that the clinical benefit of VNS for TRD remains controversial and it is unclear whether the possible benefits associated with VNS therapy outweigh any risks. Larger, randomized, appropriately controlled studies are necessary to establish VNS as a safe and effective alternative treatment for these patients.

In an UptoDate review on unipolar depression in adults: treatment with surgical approaches, the authors state that there are no rigorous data that indicate vagus nerve stimulation is efficacious for treatment resistant unipolar major depression. However, it is possible that the benefit of vagus nerve stimulation for treatment resistant depression accrues over time, based upon prospective observational studies that followed patients for up to one or more years. The mechanism of action by which vagus nerve stimulation may perhaps treat unipolar major depression is unknown (Holtzheimer, et al., 2019).

In an UptoDate review on unipolar depression in adults: management of highly resistant (refractory) depression, the authors discuss treatments with little to no benefit including vagus nerve stimulation. The authors report that there is no compelling data that indicate vagus nerve stimulation is efficacious for treatment refractory unipolar major depression (Thase, et al., 2019).

An active, ongoing clinical trial, A Study to Assess Effectiveness and Efficiency of VNS Therapy in Patients With Difficult to Treat Depression. (RESTORE-LIFE) NCT03320304) was identified in the ClinicalTrials.gov database.

Professional Societies/Organizations: The American Psychiatric Association (APA) practice guideline for the treatment of patients with major depressive disorder 3rd edition discusses vagus nerve stimulation (VNS) under other somatic therapies. The authors state that electroconvulsive therapy (ECT) remains the treatment of best established efficacy against which other stimulation treatments (e.g., VNS, deep brain stimulation, transcranial magnetic stimulation, other electromagnetic stimulation therapies) should be compared. VNS may be an additional option for individuals who have not responded to at least four adequate trials of antidepressant treatment, including ECT [III]. For patients whose depressive episodes have not previously responded to acute or continuation treatment with medications or a depression focused psychotherapy but who have shown a response to ECT, maintenance ECT may be considered [III]. Maintenance treatment with VNS is also appropriate for individuals whose symptoms have responded to this treatment modality [III]. According to the APA, relative to other antidepressive treatments, the role of VNS remains a subject of debate. However, it could be considered as an option for patients with substantial symptoms that have not responded to repeated trials of antidepressant treatment. The three APA rating categories represent varying levels of clinical confidence:
• I: Recommended with substantial clinical confidence
• II: Recommended with moderate clinical confidence
• III: May be recommended on the basis of individual circumstances (Gelenberg, et al., 2010).

The 2016 The Department of Veterans Affairs and the Department of Defense evidence-based clinical practice guideline for the management of major depressive disorder recommends against offering vagus nerve stimulation (VNS) for patients with MDD, including patients with severe treatment-resistant depression outside of a research setting.

VNS Treatment for Other Indications
VNS has been proposed for use in a number of other indications including, but not limited to, addiction, Alzheimer’s disease, anxiety, autism, bulimia, cancer, cerebral palsy, chronic heart failure, coma, craving, essential tremor, fibromyalgia, headache, ischemic stroke, memory and learning disability, migraine, multiple sclerosis, narcolepsy, obesity, obsessive-compulsive disorder, panic disorder, pain syndromes, posttraumatic stress disorder, sleep disorder, traumatic brain injury, Primary Sjögren's Syndrome, Tourette’s Syndrome. In AD, it has been proposed that stimulation of the vagus nerve may cause surges in norepinephrine in an area of the brain that is involved with memory storage (Adelson, 2004). The peer-reviewed scientific literature regarding the use of VNS for AD or other indications is limited by small sample size and lack of a comparator and therefore conclusions about safety and efficacy cannot be made at this time. VNS devices are not FDA-approved for treatment of these indications (Tarn, et al., 2019; Kimberley, et al., 2018; Kilgard, et al., 2018; Reijmen, et al., 2018; Premchand, et al., 2016; Grazzi, et al., 2016; Dawson, et al., 2016; Gold, et al., 2016; Zannad, et al., 2015; Shi, et al., 2013; McClelland, et al., 2013, Herremans, et al., 2012; Lange, et al., 2011; De Ferrari, et al., 2011; Beekwilder, et al., 2010; Klein, et al., 2010; Levy, et al., 2010; George, et al., 2010; Pardo, et al., 2007; George, et al., 2007; Ansari, et al., 2007; Bodenlos, et al., 2007; Merrill, et al., 2006; Hatton, et al., 2006; Mauskop, et al., 2005; Adelson, 2004; Handforth, et al., 2003; Sjogren, et al., 2002; Marolow, et al., 2001).

Transcutaneous Vagus Nerve Stimulator (tVNS)
Non-implantable or transcutaneous vagus nerve stimulation (tVNS) is being investigated as a noninvasive alternative to surgery for VNS. tVNS approaches using transcutaneous stimulation of the cervical branch of the vagus at the neck or of the auricular branch of the vagus at the concha of the outer ear have been developed.

A noninvasive TVNS device called the gammaCore® (ElectroCore, LLC, Basking Ridge, NJ) is currently being investigated for the treatment of various types of primary headaches, including migraine and cluster headaches (CH), and for the prevention of episodic, chronic, and menstrual migraines and CH. Despite significant advancements in the management of cluster and migraine headache, some patients do not adequately respond to drug therapies and remain symptomatic. New noninvasive, nonpharmacologic approaches are needed to treat the pain associated with these headache types. The gammaCore noninvasive vagus nerve stimulator is proposed to help meet this need. gammaCore is a handheld device comparable in size to a mobile phone. It is designed to deliver noninvasive TVNS. The device consists of a portable stimulator with a battery, signal-generating electronics, and a digital control user interface that controls signal amplitude. Two stainless steel round discs function as skin contact surfaces. A conductive gel is applied on the stimulation surfaces of the device prior to placement on the neck. The device delivers a mild electrical signal that is transmitted to the cervical branch of the vagus nerve (Hayes, 2018, 2019).

U.S. Food and Drug Administration (FDA): The April 14, 2017 (updated September 1, 2017) FDA De Novo request (DEN150048) states the gammaCore Non-invasive Vagus Nerve Stimulator is indicated for the acute treatment of pain associated with episodic cluster headache in adult patients. On May 30, 2017, gammaCore-S (electroCore® Medical, LLC, Basking Ridge, NJ) received Class II clearance by the FDA through the 510(k) process (K171306). Approval was based on the predicate device gammaCore. The differences between the gammaCore-S and the gammaCore device is a change in the user interface. The indication for use states the gammaCore-S Non-invasive Vagus Nerve Stimulator is intended to provide noninvasive vagus nerve stimulation (nVNS) on the side of the neck. The gammaCore-S device is indicated for the acute treatment of pain associated with episodic cluster headache in adult patients. Each stimulation with gammaCore-S lasts two minutes. The patient controls the stimulation strength.
On December 7, 2017, the gammaCore-2 Non-invasive Vagus Nerve Stimulator is intended to provide noninvasive vagus nerve stimulation (nVNS) on the side of the neck. The gammaCore-2 device is indicated for the acute treatment of pain associated with episodic cluster headache in adult patients (K172270). The differences between the gammaCore-2 and the gammaCore-S can be summarized as a change in the user interfaces and recharging capabilities.

On January 23, 2018, the gammaCore-S Non-invasive Vagus Nerve Stimulator received expanded FDA 510(k) approval (K173442) for the acute treatment of pain associated with migraine headache in adult patients. The 510(k) clearance is based on results of the PRESTO randomized sham-controlled trial (Tassoreli, et al., 2018) (NCT02686034).

On March 30, 2018, the gammaCore Sapphire Non-invasive Vagus Nerve Stimulator received expanded FDA 510(k) approval (K180538) for the acute treatment of pain associated with episodic cluster headache in adult patients. The gammaCore Sapphire has the same intended use as the predicate gammaCore-2 device (K172270). The modification to the available treatment day reload/refill RFID capabilities does not impact the device for its intended use in the acute treatment of pain associated with episodic cluster headaches in adult patients. Clinical studies were not required to validate the modifications in the gammaCore Sapphire.

On November 27, 2018, the gammaCore Sapphire non-invasive Vagus Nerve Stimulator (K182369) expanded FDA 510(k) approval for adjunctive use for the preventive treatment of cluster headache in adult patients. The indications for use state that gammaCore Sapphire (non-invasive vagus nerve stimulator) is intended to provide non-invasive vagus nerve stimulation (nVNS) on the side of the neck. gammaCore is indicated for:

- Adjunctive use for the preventive treatment of cluster headache in adult patients.
- The acute treatment of pain associated with episodic cluster headache in adult patients.
- The acute treatment of pain associated with migraine headache in adult patients.

The FDA 510(k) conclusions state there have been no changes in the technological characteristics or intended use of the gammaCore Sapphire. Clinical data demonstrating the safety and effectiveness of acute treatment of pain associated with migraine headache were provided previously for gammaCore-S in submission K173442 and are applicable to the gammaCore Sapphire. The addition of the preventive treatment of cluster headache to the Indications for Use does not raise new or different questions of safety or effectiveness compared to those raised with the predicate device. Therefore, the presented information demonstrates that the subject device is substantially equivalent to the predicate device.

Literature Review

Evidence in the peer-reviewed literature related to the treatment indications for which the gammaCore device is cleared in the U.S. includes outcomes reported in the PRESTO randomized controlled trial (RCT) for patients with acute treatment of pain associated with migraine headache (Tassoreli, et al., 2018) and outcomes reported in patients with episodic cluster headache who were enrolled in ACT1 (Silberstein, et al., 2016b) or ACT2 RCTs (Goadsby, et al., 2018). Additional PRESTO trial outcomes are also published (Grazzi, et al., 2018; Martelletti, et al., 2018). A few uncontrolled small open-label studies are also published (Barbanti, et al., 2015; Kinfe, et al., 2015; Goadsby, et al., 2014) (Hayes, 2018).

Evidence in the peer-reviewed literature related to the preventive treatment of cluster headache for which the gammaCore device is cleared in the U.S. is the pivotal PREVA Study (Gaul, et al., 2016). A published post hoc analysis of PREVA trial outcomes is also available (Gaul, et al., 2017). Also published is a retrospective analysis of data from 30 patients in the United Kingdom (UK) with medically refractory cluster headache who were applying to the National Health Service for individual funding requests for gammaCore therapy (Marin et al., 2018) (Hayes, 2018).

Cluster Headache

Acute Treatment of Pain Associated with Episodic Cluster Headache: Silberstein et al. (2016b) conducted a randomized, double-blind, sham-controlled prospective study (ACT1) evaluating tVNS as acute treatment of cluster headache. In this pivotal US study participants were diagnosed with episodic cluster headache or chronic cluster headache ≥ one year before enrollment. The study population was predominantly white (87%) and male (84%). This trial had two design phases: a one-month, double-blind sham-controlled phase, followed by three-
month, open-label nVNS therapy phase. A total of 150 participants were randomized (1:1) to receive t-VNS or sham treatment for ≤ one month during a double-blind phase; study completers could enter a three-month t-VNS open-label phase. The primary endpoint was response rate, defined as the proportion of participants who achieved pain relief (pain intensity of 0 or 1) at 15 minutes after treatment initiation for the first cluster headache attack without rescue medication use through 60 minutes. The key secondary endpoint was sustained treatment response, which was defined as the percentage of patients with a 0 or 1 pain severity score, without rescue medication, 15 through 60 minutes following treatment. A total of 133 participants were included in the intention-to-treat population (ITT): all participants, 60 tVNS-treated and 73 sham-treated; episodic cluster headache cohort: 38 t-VNS-treated, 47 sham-treated; and, chronic cluster headache cohort: 22 t-VNS-treated, 26 sham-treated. There was no significant difference in the primary efficacy endpoint between the two treatment groups. In the total study population, a response was achieved in 26.7% of t-VNS-treated participants and 15.1% of sham-treated participants (p=0.10). On subset analysis, response rates were significantly higher in the episodic cluster headache cohort treated with t-VNS than in the sham-treated cohort (t-VNS, 34.2%; sham, 10.6%; p=0.008), but not the chronic cluster headache cohort (t-VNS, 13.6%; sham, 23.1%; p=0.48. Sustained response rates were significantly higher with t-VNS for the episodic cluster headache cohort (p=0.008) and total population (p=0.04). A total of 35 of 150 participants reported adverse device effects (t-VNS, 11; sham, 24) in the double-blind phase and 18 of 128 participants in the open-label phase. Adverse device effects included application site reactions (e.g., tingling, burning, soreness, stinging or skin irritation, redness, or erythema), lip or facial drooping, pulling, or twitching, and dysgeusia or metallic taste. No serious adverse device effects were reported. The authors state a limitation of this study was inadequate blinding. Investigators reported that a “considerable proportion” of nVNS group patients correctly guessed their treatment assignment after the first treatment. This is noteworthy because the primary efficacy endpoint was measured based on response to the first treatment only. Sample size of Individual cohorts lacked statistical power.

To confirm and extend the results from the ACT1 study above, Goadsby et al. (2018) examined additional clinical and patient-related endpoints in a European setting (ACT 2). This RCT compared nVNS with a sham device for acute treatment in patients with episodic or chronic cluster headache (eCH, cCH). After completing a 1-week run-in period, subjects were randomly assigned (1:1) to receive nVNS or sham therapy during a 2-week double-blind period. Some patients dropped out after the run-in period. The primary efficacy endpoint was the proportion of all treated attacks that achieved pain-free status within 15 minutes after treatment initiation, without rescue treatment. The Intention to treat (ITT) population in the double blind period comprised 48 nVNS-treated (14 eCH, 34 cCH) and 44 sham-treated (13 eCH, 31 cCH) subjects. The trial used a 5-point scale to rate pain severity (0=no pain and 4=very severe pain). The primary efficacy endpoint was the proportion of all treated attacks that reported no pain (pain score of 0) within 15 minutes after treatment initiation. This endpoint did not statistically differ in the overall study population or in the subgroup of patients with chronic cluster headache. A statistical difference favoring gammaCore over sham nVNS was seen in the subgroup of patients with episodic cluster headache. For the primary endpoint, nVNS (14%) and sham (12%) treatments were not significantly different for the total cohort. In the eCH subgroup, nVNS (48%) was superior to sham (6%; p < 0.01). No significant differences between nVNS (5%) and sham (13%) were seen in the cCH subgroup. Twenty nVNS-treated subjects (40%) and 14 sham treated subjects (27%) had ≥1 AE during the double blind period. The author reported limitations included short-term follow-up, imbalance between CH subtypes, during the open-label period subjects could alter their CH treatment regimens by adding prophylactic therapies, or changing doses of existing treatments, or both.

In a Hayes Emerging Technology Report on gammaCore Transcutaneous Vagus Nerve Stimulator the authors reported that there is insufficient published evidence to draw firm conclusions regarding the efficacy of gammaCore for the acute treatment of pain associated with episodic cluster headache. The best available published evidence for this indication comes from the ACT1 and ACT2 pivotal RCTs. Both trials enrolled patients with either episodic or chronic cluster headache with small sample sizes. Both the ACT1 and ACT2 trials failed to meet their primary efficacy endpoints in the overall study populations and in subgroup analyses of patients with chronic cluster headache. However, subgroup analyses of patients with episodic cluster headache statistically favored gammaCore over sham stimulation (Hayes, 2018).

Adjunctive Use in the Preventive Treatment of Cluster Headache: Gaul et al. (2016) evaluated non-invasive vagus nerve stimulation (nVNS) as an adjunctive prophylactic treatment of chronic cluster headache (CH) in a pivotal prospective, open-label, randomized study (PREVA Trial) that compared adjunctive prophylactic nVNS
(n=48) with standard of care (SoC) alone (control (n=49)). It enrolled adults with chronic cluster headache for ≥ one year prior to enrollment, without pain-free remission lasting at least one month. All trial participants received only SoC treatment during a two-week baseline period. A two-week baseline phase was followed by a four-week randomized phase (SoC plus nVNS vs control) and an optional four-week extension phase (SoC plus nVNS). SoC treatments included verapamil, lithium, topiramate, and/or corticosteroids; use of specific prophylactic agents was similar between treatment groups. Changes in SoC prophylactic medications were not permitted throughout the study. Participants were also given the option of acutely treating attacks with three additional nVNS doses at pain onset but were advised not administer preventive therapy within a two-hour period after acute treatment. The primary end point was the reduction in the mean number of CH attacks per week. Secondary end points were response rate, abortive medication use and safety/tolerability. During the randomized phase, individuals in the intent-to-treat population treated with SoC plus nVNS (n=45) had a significantly greater reduction in the number of attacks per week vs controls (n=48) for a mean therapeutic gain of 3.9 fewer attacks per week. Higher ≥50% response rates were also observed with SoC plus nVNS vs controls (40% (18/45)) vs controls (8.3% (4/48); p<0.001). Researchers reported that the optional use of nVNS as abortive therapy for an acute cluster headache attack had no effect on attack duration or pain intensity. No serious treatment-related adverse events occurred. Study limitations include the lack of a placebo or sham device, an open-label study design, the short treatment duration, and the use of patient-reported outcomes.

Marin et al. (2018) conducted a multicenter, retrospective study of the gammaCore tVNS device for individuals with cluster headaches. The researchers reviewed data from 30 subjects (29 with chronic cluster headaches and one with episodic cluster headaches) who used tVNS after an inadequate response and/or intolerable side effects with ≥ 3 current or previous treatments (e.g., medications, deep brain stimulation, occipital nerve stimulation). The subjects were instructed to use tVNS for preventive therapy, acute therapy, or both. The mean duration of the evaluation period was 7.6 months (0.9–27.5). The mean range of attack frequency with standard of care (SoC) alone was 26.6 (3.8–77.0) attacks/week compared to 9.5 (0–38.5) with SoC plus tVNS (p<0.01). A total of three subjects, who averaged 42 to 63 attacks/week before tVNS, had no attacks during the evaluation period (range from 1.7 to 13.2 months). For the 25 subjects who reported duration of attacks, the mean decreased from 51.9 minutes with SoC alone to 29.4 minutes with SoC plus tVNS (p<0.01). In the 18 subjects who reported severity, the mean decreased from 7.8 with SoC alone to 6.0 with SoC plus tVNS (p<0.01). No serious adverse events were reported. The researchers concluded that t-VNS “led to significant decreases in attack frequency, severity, and duration in patients with CH who previously did not benefit from or could not tolerate multiple preventive and/or acute treatments.” The study was limited by a retrospective design, small sample size and inherent inclusion bias. By definition, this was a responder study, and patient responses were unlikely representative of the cluster headache population as a whole. Furthermore, the current study sample comprising 63% women was unusual considering that cluster headache is more common among men.

In a Hayes Emerging Technology Report on gammaCore Transcutaneous Vagus Nerve Stimulator the authors reported that the published evidence is insufficient to assess the efficacy of gammaCore for adjunctive use in the preventive treatment of cluster headache. The best available evidence is limited to outcomes from the short-term, small open-label PREVA trial, which found gammaCore plus standard of care (SOC) significantly superior to SOC alone for reducing the mean number of headache attacks. The results need to be confirmed in additional trials in larger patient populations with longer follow-up. PREVA trial participants had the option of using nVNS to treat acute headache attacks, but found that this had no effect on attack duration or pain intensity (Hayes, 2018).

An UpToDate review on cluster headache: treatment and prognosis states that “Noninvasive vagus nerve stimulation (VNS) may reduce the frequency of cluster headache attacks, but evidence is inconsistent” (May, 2019).

Migraine

Acute Treatment of Pain Associated with Migraine Headache: Tassoreli, et al., 2018 evaluated non-invasive vagus nerve stimulation (nVNS) in the Prospective Study of nVNS for the Acute Treatment of Migraine (PRESTO). In this pivotal multicenter, double-blind, randomized, sham-controlled study participants were 100% white and 76.5% of participants were female; a majority (approximately 93%) had episodic migraines without aura. Participants were <50 years of age at migraine onset and had an attack frequency of 3–8 attacks per month with <15 headache days per month over the last six months. A total of 248 participants were randomized to receive nVNS (n=122) or sham treatment (n=126) within 20 minutes from pain onset. Participants were to...
repeat treatment if pain had not improved in 15 minutes. The trial had three design phases, each lasting four weeks: an observational run-in phase, a randomized double-blind phase, and an open-label active-treatment phase. Participants continued taking their usual migraine medications during the run-in phase. After randomization, patients could treat up to five migraine attacks with their allocated device (active or sham nVNS). Migraine medications were allowed as a rescue intervention during this phase. Patients were asked to wait 120 minutes after device treatment before taking a rescue medication. During the open-label phase, patients could treat up to five additional attacks with active nVNS. The primary endpoint was the proportion of participants who were pain free without using rescue medication at 120 minutes after study treatment completion for the first treated migraine attack of the double-blind period. Secondary endpoints were pain-free rates at 30 and 60 minutes, pain relief at 30, 60, and 120 minutes, mean percentage change in pain score from baseline to 30, 60, and 120 minutes, absence of associated symptoms (i.e., nausea, vomiting, photophobia, and phonophobia) at 120 minutes. nVNS (n=120) was superior to sham (n=123) for pain freedom at 30 minutes (12.7% vs 4.2%; p=0.012) and 60 minutes (21.0% vs 10.0%; p=0.023) but not at 120 minutes (30.4% vs 19.7%; p=0.067; primary endpoint; logistic regression) after the first treated attack. The inconsistency between the 120-minute finding and the findings at 30 and 60 minutes prompted a post-hoc repeated measures testing. This unplanned testing found that a significantly greater proportion of nVNS versus sham group patients were pain-free through 120 minutes (rather than at 120 minutes, as was defined for the primary endpoint). nVNS demonstrated benefits across other endpoints including pain relief at 120 minutes and was safe and well-tolerated. Almost all participants (98%) administered at least one stimulation and were adherent to the treatment instructions, but most participants did not administer repeat stimulations for the first attack at 15 minutes as instructed (nVNS, 60.8%; sham, 60.2%) or optionally at 120 minutes (nVNS, 95.8%; sham, 93.5%). The most common adverse events (AEs) were application site discomfort and nasopharyngitis in the nVNS group and application site erythema and pain, dizziness, flu-like symptoms, and nasopharyngitis among controls. Participants reported no serious adverse events during the study. Only two participants, both controls, discontinued from the study due to AEs. A reported limitation of this study was that the sham device, which delivered an appreciable electrical signal, appears to have had some level of vagal activation. Selection of an appropriate sham device which is a consistent challenge in neuromodulation studies.

Grazzi et al. (2018) examined additional data from the above PRESTO to provide further insights into the practical utility of nVNS by evaluating its ability to consistently deliver clinically meaningful improvements in pain intensity while reducing the need for rescue medication. Patients recorded pain intensity for treated migraine attacks on a four-point scale. Data were examined to compare nVNS and sham with regard to the percentage of patients who benefited by at least one point in pain intensity. The percentage of attacks that required rescue medication and pain-free rates stratified by pain intensity at treatment initiation was assessed. A significantly higher percentage of patients who used acute nVNS treatment (n=120) vs sham (n=123) reported a ≥ 1-point decrease in pain intensity at 30 min (nVNS, 32.2%; sham, 18.5%; p=0.020), 60 min (nVNS, 38.8%; sham, 24.0%; p=0.017), and 120 min (nVNS, 46.8%; sham, 26.2%; p=0.002) after the first attack. Similar significant results were seen when assessing the benefit in all attacks. The proportion of patients who did not require rescue medication was significantly higher with nVNS than with sham for the first attack (nVNS, 59.3%; sham, 41.9%; p=0.013) and all attacks (nVNS, 52.3%; sham, 37.3%; p=0.008). When initial pain intensity was mild, the percentage of patients with no pain after treatment was significantly higher with nVNS than with sham at 60 min (all attacks: nVNS, 37.0%; sham, 21.2%; p=0.025) and 120 min (first attack: nVNS, 50.0%; sham, 25.0%; p=0.018; all attacks: nVNS, 46.7%; sham, 30.1%; p=0.037). The researchers concluded that nVNS “has the flexibility to be used alone or as adjunctive therapy for multiple attacks without risk of pharmacologic interactions and adverse events”.

Martelletti, et al. (2018) reported additional pre-defined secondary and other end-points from the above PRESTO Study. The nVNS group (n=120) had a significantly greater percentage of attacks treated during the double-blind period that were pain-free at 60 (p=0.005) and 120 mins (p=0.026) than the sham group (n=123) did. Similar results were seen for attacks with pain relief at 60 (p=0.025) and 120 mins (p= 0.018). For the first attack and all attacks, the nVNS group had significantly greater decreases (versus sham) in pain score from baseline to 60 mins (p=0.029); the decrease was also significantly greater for nVNS at 120 mins for the first attack (p= 0.011). Results during the open-label period were consistent with those of the nVNS group during the double-blind period. The incidence of adverse events and adverse device effects was low across all study periods, and no serious adverse events occurred. The authors concluded that these results further demonstrated that nVNS is an effective and reliable acute treatment for multiple migraine attacks, which can be used safely while preserving
In an open-label, single-arm, multicenter study, Barbanti et al. (2015) investigated the effects of non-invasive vagus nerve stimulation (nVNS) in patients with high-frequency episodic migraine (HFEM) and chronic migraine (CM). The study included adults with CM (≥15 headache days per month) (n=36) and high-frequency episodic migraine (HFEM) (≥8 headache days per month, with or without aura) (n=14). The primary endpoint was pain-free status at 2 hours (h). Secondary end points were pain relief at one and 2 h; pain-free status at 1 h; absence of nausea, photophobia, and phonophobia at 2 h; complete recovery from functional disability at 2 h; use of rescue medication; safety; tolerability; and end-of-study assessment of patients’ satisfaction (5-point scale: 1, very dissatisfied; to 5, very satisfied) with treatment, their willingness to use the device in the future, and their perceptions regarding the safety of nVNS. The proportion of patients reporting pain relief, defined as a ≥50% reduction in visual analog scale (VAS) score: 56.3% at 1 h and 64.6% at 2 h. A total of 35.4% and 39.6% achieved pain-free status (VAS=0) at 1 and 2 h, respectively. When all attacks (n=131) were considered, the pain-relief rate: 38.2% at 1 h and 51.1% at 2 h. The pain-free rate: 17.6% at 1 h and 22.9% at 2 h. At 2 h, freedom from nausea was reported in 66.4% (87 of 131) of attacks; freedom from photophobia and phonophobia was reported in 76.3% (100 of 131) and 77.1% (101 of 131) of attacks, respectively. Complete recovery from functional disability at 2 h was reported in 35.1% of attacks. Rescue medications were taken in 53.4% (70 of 131) of the attacks. Nearly half of the patients (45.8%; 22/48) reported satisfaction (i.e., satisfied or very satisfied) with treatment, their willingness to use the device in the future, and their perceptions regarding the safety of nVNS treatment to be safe. No major adverse events were reported. Mild tingling or pricking sensations at the stimulation site, reported by 67% (32 of 48) of patients, was the only adverse event associated with nVNS. Reported limitations of this study include: open label design, lack of control group, and short duration.

In an open-label, prospective observational study, Kinfe et al. (2015) investigated the use of cervical non-invasive vagus nerve stimulation (nVNS) for the acute treatment and prevention of migraine attacks in treatment-refractory episodic and chronic migraine (EM and CM) and evaluated the impact of nVNS on migraine associated sleep disturbance, disability, and depressive symptoms. Twenty patients with treatment-refractory migraine were enrolled in this 3-month study. Patients administered nVNS prophylactically twice daily at prespecified times and acutely as adjunctive therapy for migraine attacks. The following parameters were evaluated: pain intensity (visual analogue scale [VAS]); number of headache days per month and number of migraine attacks per month; number of acutely treated attacks; sleep quality (Pittsburgh Sleep Quality Index [PSQI]); migraine disability assessment (MIDAS); depressive symptoms (Beck Depression Inventory® [BDI]); and adverse events (AEs). Of the 20 enrolled patients, 10 patients each had been diagnosed with EM and CM. Prophylaxis with nVNS was associated with significant overall reductions in patient-perceived pain intensity; median (interquartile range) VAS scores at baseline versus 3 months were 8.0 (7.5, 8.0) versus 4.0 (3.5, 5.0) points (p<0.001). Baseline versus 3-month values were 14.7 versus 8.9 (p<0.001) for the number of headache days per month and 7.3 versus 4.5 (p<0.001) for the number of attacks per month. Significant improvements were also noted in MIDAS (p<0.001), BDI (p<0.001), and PSQI global (p<0.001) scores. No severe or serious AEs occurred. Reported limitations of this study include: open label design, lack of control arm and prospective run-in period, self-recollected reporting of acute pain relief and pain freedom findings, and small patient population.
In a Hayes Emerging Technology Report on gammaCore Transcutaneous Vagus Nerve Stimulator the authors reported that the published evidence is insufficient to determine the clinical benefit of gammaCore over sham nVNS for the acute treatment of episodic migraine headache. The best available published evidence for this indication comes from the PRESTO RCT. This pivotal trial did not meet its primary efficacy endpoint (Hayes, 2018).

In an UptoDate review on treatment of acute migraine in adults, the authors state that noninvasive vagus nerve stimulation (nVNS) may be beneficial for the acute treatment of episodic migraine, but confirmation of efficacy is needed (Smith, 2019a). Another UptoDate review on preventive treatment of migraines in adults does not mention tVNS as a therapeutic/prophylactic option (Smith, 2019b).

The gammaCore nVNS is being evaluated for potential future U.S. label expansion. A pivotal trial (NCT02378844) of gammaCore for the prevention of migraine headache is in progress.

Prevention of migraine headache: Silberstein et al. (2016a) evaluated the feasibility, safety, and tolerability of noninvasive vagus nerve stimulation (nVNS) for the prevention of chronic migraine (CM) attacks (EVENT Study). In this prospective, multicenter, double-blind, sham-controlled pilot study of nVNS in CM prophylaxis, adults with CM (≥15 headache d/mo) entered the baseline phase (one month) and were subsequently randomized to nVNS or sham treatment (two months) before receiving open-label nVNS treatment (six months). The primary endpoints were safety and tolerability. Efficacy endpoints in the intent-to-treat population included change in the number of headache days per 28 days and acute medication use. Fifty-nine participants (mean age, 39.2 years; mean headache frequency, 21.5 d/mo) were enrolled. During the randomized phase, tolerability was similar for nVNS (n = 30) and sham treatment (n=29). Most adverse events were mild/moderate and transient. Mean changes in the number of headache days were -1.4 (nVNS) and -0.2 (sham). Twenty-seven participants completed the open-label phase. For the 15 completers initially assigned to nVNS, the mean change from baseline in headache days after eight months of treatment was -7.9. The authors concluded that therapy with nVNS was well-tolerated with no safety issues. Study limitations included the small sample size, blinding challenges, and high discontinuation rate. The authors reported that larger sham-controlled studies are needed.

Systematic Review

Lendavi et al. (2018) conducted a systematic review for randomized controlled trials (RCTs) and prospective cohort clinical studies assessing the safety and efficacy of noninvasive peripheral nerve stimulation of the cervical branch of the vagal nerve (afferent properties) for primary headache disorders (episodic/chronic migraine [EM/CM] and cluster headache [ECH/CCH]). Three RCTs were identified for ECH/CCH (ACT-1, ACT-2 and PREVA), one RCT for migraine (EVENT) and several prospective cohort studies and retrospective analyses for both headache disorders. The authors concluded that cervical nVNS represents a novel, safe and efficient adjunctive treatment option for primary headache disorders. In particular, preliminary observations suggest enhanced nVNS responsiveness in favor of episodic subtypes (EM and ECH). However, preclinical studies are urgently warranted to dissect the mechanism of action. Comparative and reproducible conclusions are limited by the different stimulation protocols and/or outcome parameter measures.

Other Indications: tVNS has been proposed for use in a number of indications including, but not limited schizophrenia (Hasan, et al., 2015); tinnitus (Lehtimaki, et al., 2013), intractable epilepsy (Aihua, et al., 2014; He, et al., 2013; Stefan, et al., 2012), depression (Fang, et al., 2016; Hein, et al., 2012; Rong, et al., 2016, 2012), pain (Busch, et al., 2013), cardiac function (Kreuzer, et al., 2012), postoperative cognitive dysfunction in elderly patients (Xiong, et al., 2009, central sleep apnea (Forde, et al., 2017). Most of the evidence in the peer-reviewed literature for tVNS consists of pilot studies or case series for a variety of indications. The studies are limited by lack of a comparator and small sample size therefore conclusions about safety and efficacy cannot be made at this time.

Professional Societies/Organizations: The American Academy of Neurology (AAN): no recommendations were found for tVNS.

The American Headache Society has published evidenced-based guidelines on the treatment of cluster headache. The guideline, reviewing outcomes of the PREVA study, states that "future studies that are blinded
with a sham control are warranted to elucidate the efficacy and safety of noninvasive vagus nerve stimulation for treatment of cluster headache” (Robbins, et al., 2016).

Centers for Medicare & Medicaid Services (CMS)

- National Coverage Determinations (NCDs): The NCD titled vagus nerve stimulation (VNS) (160.18) was effective May 4, 2007. This Medical Coverage Policy is broader in scope than the VNS NCD. A NCD Decision Memo for Vagus Nerve Stimulation (VNS) for Treatment Resistant Depression (TRD) (CAG-00313R2) dated February 15, 2019 states that CMS is finalizing changes to the vagus nerve stimulation (VNS) NCD (160.18) for VNS for treatment resistant depression (TRD) that will expand Medicare coverage. The scope of this reconsideration is limited to VNS for TRD. The Centers for Medicare & Medicaid Services (CMS) will cover FDA approved vagus nerve stimulation (VNS) devices for treatment resistant depression (TRD) through Coverage with Evidence Development (CED) when offered in a CMS approved, double-blind, randomized, placebo-controlled trial with a follow-up duration of at least one year with the possibility of extending the study to a prospective longitudinal study when the CMS approved, double-blind, randomized placebo-controlled trial has completed enrollment, and there are positive interim findings. Refer to the CMS NCD table of contents link in the reference section.

- Local Coverage Determinations (LCDs): No LCDs found.

Use Outside of the US

Per the manufacturer website, the tVNS device NEMOS® tVNS Technologies GmbH (Erlangen, Germany) received the European market (CE mark) for the treatment of epilepsies. This device is not FDA-approved in the United States. In October 2018 Ceromed was taken over by tVNS Technologies GmbH.

gammaCore has regulatory approval in the European Union, South Africa, India, Colombia, New Zealand, Canada, and Malaysia for the acute and/or prophylactic treatment of cluster headache. CE Marking has been granted for primary headache, epilepsy, bronchoconstriction, gastric motility disorders, and depression and anxiety. In January 2016, ElectroCore LLC announced the commercial launch of gammaCore in Germany for the treatment of migraine and cluster headache.

In October 2018, the National Institute for Clinical Excellence (NICE) (United Kingdom) issued a Medtech innovation briefing on nVNS for cluster headache (MIB162). The briefing states that the “intended place in therapy would be as well as standard care, most likely where standard treatments for cluster headache are ineffective, not tolerated or contraindicated” and that key uncertainties around the evidence are that “people with episodic and chronic cluster headaches respond differently to treatment with gammaCore. The optimal use of gammaCore in the different populations is unclear.” In July 2019, the NICE medical technologies advisory committee (MTAC) has made draft recommendations on this technology following consideration of the evidence and expert views at a meeting on 14th June 2019. Expected publication date: December 3, 2019.

In March 2016, the National Institute for Clinical Excellence (NICE) (United Kingdom) published a guidance document addressing transcutaneous stimulation of the cervical branch of the vagus nerve for cluster headache and migraine stating, “Current evidence on the safety of transcutaneous stimulation of the cervical branch of the vagus nerve for cluster headache and migraine raises no major concerns. The evidence on efficacy is limited in quantity and quality. Therefore, this procedure should only be used with special arrangements for clinical governance, consent and audit or research” (NICE, 2016).

In December 2009, NICE (United Kingdom) published a guidance document addressing vagus nerve stimulation for treatment-resistant depression stating, “Current evidence on the safety and efficacy of vagus nerve stimulation (VNS) for treatment-resistant depression is inadequate in quantity and quality. Therefore this procedure should be used only with special arrangements for clinical governance, consent and audit or research. It should be used only in patients with treatment-resistant depression” The authors stated that for efficacy outcomes the interpretation of the evidence was complicated by different publications reporting on the same patients but at different follow-up periods (NICE, 2009).

In January 2012 (updated 2016, 2018, 2019), NICE (United Kingdom) published a clinical guideline document addressing epilepsies: diagnosis and management. The guideline states that “Vagus nerve stimulation is
indicated for use as an adjunctive therapy in reducing the frequency of seizures in adults who are refractory to antiepileptic medication but who are not suitable for resective surgery. This includes adults whose epileptic disorder is dominated by focal seizures (with or without secondary generalization) or generalized seizures. Vagus nerve stimulation is indicated for use as an adjunctive therapy in reducing the frequency of seizures in children and young people who are refractory to antiepileptic medication but who are not suitable for resective surgery. This includes children and young people whose epileptic disorder is dominated by focal seizures (with or without secondary generalization) or generalized seizures”.

The Canadian Psychiatric Association and the Canadian Network for Mood and Anxiety Treatments (CANMAT) partnered to produce evidence-based clinical guidelines for the management of adults with major depressive disorder. Evidence-informed responses were developed for 31 questions for six neurostimulation modalities: transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), electroconvulsive therapy (ECT), magnetic seizure therapy (MST), vagus nerve stimulation (VNS), and deep brain stimulation (DBS). The authors concluded that rTMS is now a first-line recommendation for patients with MDD who have failed at least one antidepressant. ECT remains a second-line treatment for patients with treatment-resistant depression, although in some situations, it may be considered first line. Third-line recommendations include tDCS and VNS. MST and DBS are still considered investigational treatments (Milev, et al., 2016).

Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Considered Medically Necessary when criteria in the applicable policy statements listed above are met:

<table>
<thead>
<tr>
<th>CPT® Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61885</td>
<td>Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to a single electrode array</td>
</tr>
<tr>
<td>61886</td>
<td>Insertion or replacement of cranial neurostimulator pulse generator or receiver, direct or inductive coupling; with connection to 2 or more electrode arrays</td>
</tr>
<tr>
<td>61888</td>
<td>Revision or removal of cranial neurostimulator pulse generator or receiver</td>
</tr>
<tr>
<td>64553</td>
<td>Percutaneous implantation of neurostimulator electrode array; cranial nerve</td>
</tr>
<tr>
<td>64568</td>
<td>Incision for implantation of cranial nerve (eg, vagus nerve) neurostimulator electrode array and pulse generator</td>
</tr>
<tr>
<td>64569</td>
<td>Revision or replacement of cranial nerve (eg, vagus nerve) neurostimulator electrode array, including connection to existing pulse generator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1767</td>
<td>Generator, neurostimulator (implantable), non-rechargeable</td>
</tr>
<tr>
<td>C1778</td>
<td>Lead, neurostimulator (implantable)</td>
</tr>
<tr>
<td>C1816</td>
<td>Receiver and/or transmitter, neurostimulator (implantable)</td>
</tr>
<tr>
<td>C1820</td>
<td>Generator, neurostimulator (implantable), with rechargeable battery and charging system</td>
</tr>
<tr>
<td>C1883</td>
<td>Adaptor/extension, pacing lead or neurostimulator lead (implantable)</td>
</tr>
<tr>
<td>L8679</td>
<td>Implantable neurostimulator, pulse generator, any type</td>
</tr>
<tr>
<td>L8680</td>
<td>Implantable neurostimulator electrode, each</td>
</tr>
<tr>
<td>L8681</td>
<td>Patient programmer (external) for use with implantable programmable neurostimulator pulse generator, replacement only</td>
</tr>
<tr>
<td>L8682</td>
<td>Implantable neurostimulator radiofrequency receiver</td>
</tr>
<tr>
<td>L8683</td>
<td>Radiofrequency transmitter (external) for use with implantable neurostimulator radiofrequency receiver</td>
</tr>
<tr>
<td>L8685</td>
<td>Implantable neurostimulator pulse generator, single array, rechargeable, includes extension</td>
</tr>
<tr>
<td>L8686</td>
<td>Implantable neurostimulator pulse generator, single array, non-rechargeable, includes</td>
</tr>
<tr>
<td>CPT® Codes</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C1822</td>
<td>Generator, neurostimulator (implantable), high frequency, with rechargeable battery and charging system</td>
</tr>
</tbody>
</table>

Considered Experimental/Investigational/Unproven when used to report Transcutaneous Vagus Nerve Stimulation (tVNS):

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0720</td>
<td>Transcutaneous electrical nerve stimulation (TENS) device, 2 lead, localized stimulation</td>
</tr>
</tbody>
</table>

References

71. Kilgard MP, Rennaker RL, Alexander J, Dawson J. Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient. NeuroRehabilitation. 2018;42(2):159-165

