Surgical Treatments for Lymphedema and Lipedema

INSTRUCTIONS FOR USE
The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion related to a topic addressed in a Coverage Policy. In the event of a conflict, a customer’s benefit plan document always supersedes the information in the Coverage Policies. In the absence of a controlling federal or state coverage mandate, benefits are ultimately determined by the terms of the applicable benefit plan document. Coverage determinations in each specific instance require consideration of 1) the terms of the applicable benefit plan document in effect on the date of service; 2) any applicable laws/regulations; 3) any relevant collateral source materials including Coverage Policies and; 4) the specific facts of the particular situation. Each coverage request should be reviewed on its own merits. Medical directors are expected to exercise clinical judgment and have discretion in making individual coverage determinations. Coverage Policies relate exclusively to the administration of health benefit plans. Coverage Policies are not recommendations for treatment and should never be used as treatment guidelines. In certain markets, delegated vendor guidelines may be used to support medical necessity and other coverage determinations.

Overview
This Coverage Policy addresses surgical treatments for lymphedema and lipedema.

Coverage Policy
The following surgical treatments for lymphedema are considered experimental, investigational or unproven:

- excisional procedures (e.g., debulking and liposuction)
- microsurgical treatment (e.g., microsurgical lymphatico-venous anastomosis, lymphatic- capsular-venous anastomosis, lymphovenous bypass)
- vascularized lymph node transfer
- tissue transfer (e.g., omental or mesenteric flap)
Liposuction, (i.e., water jet-assisted liposuction, micro-cannular) or lipectomy for the treatment of lipedema is considered medically necessary when ALL of the following criteria are met:

- Lipedema is causing ALL of the following conditions/symptoms:
 - pain in the affected areas
 - easy bruising
 - lack of improvement in lipedema-affected areas following weight loss if applicable
 - lack of improvement in swelling with limb elevation
- Clinical examination findings and photographs confirm the presence of ALL of the following:
 - bilateral symmetric adiposity (fat accumulation) in the affected extremities
 - tenderness and nodularity of fat deposits in lipedema affected areas (dimpled or orange peel texture)
 - non-pitting edema
 - a negative Stemmer sign, unless the individual has coexisting lymphedema (Stemmer’s sign is negative when a fold of skin can be pinched and lifted up at the base of the second toe or at the base of the middle finger)
- There is physical function impairment (i.e. difficulty ambulating or performing activities of daily living)
- Lack of response to at least three consecutive months of medical management (e.g. conservative treatment with compression garments and manual lymph drainage)

General Background

Lymphedema
Lymphedema is a chronic condition that develops over months to years of an increasing lymphatic load that exceeds the lymphatic system’s transport capacity. Impairment of lymphatic transport leads to interstitial accumulation of a protein-rich fluid that are normally transported by the lymphatic system from the interstitium into the circulation. Lymphedema can affect any body part including trunk, limbs, head/neck, and genitals. Lymphedema is classified into primary and secondary forms. Primary lymphedema occurs when the lymphatic system does not mature properly during fetal development. It can be familial, genetic, or hereditary. Secondary lymphedema occurs secondary to a disruption or obstruction of the lymphatic system caused by: filariasis (primary cause worldwide), lymph node surgery/radiation due to cancer (primary cause in the United States) or by another cause such as chronic venous insufficiency (CVI), deep vein thrombosis (DVT), infection, surgery/trauma, lipedema, and obesity (Fort, 2021; Bello, et al., 2017).

Lymphedema may be clinically apparent but imaging is required for confirmation and to rule out other conditions that may confound the clinical presentation. Imaging technologies to confirm lymphedema or plan surgery include lymphoscintigraphy, or indocyanine green lymphangiography, possibly complemented by magnetic resonance imaging (Hayes, 2020; International Society of Lymphology [ISL], 2013).

Once diagnosed, lymphedema may be staged by severity. There are 2 main staging methods—the International Society of Lymphology (ISL) scale and the Campisi scale. The International Society of Lymphology (ISL) staging guidelines for lymphedema states (Mehrara, 2021; ISL, 2020; Bello, et al., 2017; Hayes, 2020):

- **Stage 0: Latent or Subclinical**
 - impaired lymphatic transport
 - no evident swelling/edema, subtle changes in tissue fluid/composition
 - changes in subjective symptoms
 - may last months or years before progression
- **Stage I: Spontaneously Reversible**
 - early accumulation of protein-rich fluid
 - pitting edema, no evidence of dermal fibrosis
 - subsides with elevation
- Stage II: Spontaneously Irreversible
 - accumulation of protein-rich fluid
 - pitting edema may progress to nonpitting as excess fat and fibrosis develop
 - does not resolve with elevation alone

- Stage III: Lymphostatic Elephantiasis
 - nonpitting
 - significant fibrosis
 - trophic skin changes such as fat deposits, acanthosis, and warty overgrowths

The Campisi staging system for lymphedema:

- Stage IA: Latent lymphedema without clinical evidence of edema, but with impaired lymph transport capacity (provable by lymphoscintigraphy) and with initial immune-histochemical alterations of lymph nodes, lymph vessels, and extracellular matrix.
- Stage IB: Initial lymphedema, totally or partially decreasing by rest and draining position, with worsening impairment of lymph transport capacity and of immune-histochemical alterations of lymph collectors, nodes, and extracellular matrix.
- Stage IIA: Increasing lymphedema, with vanishing lymph transport capacity, relapsing lymphangitic attacks, fibroindurative skin changes, and developing disability.
- Stage IIB: Column shaped limb fibrolymphedema, with lymphostatic skin changes, suppressed lymph transport capacity, and worsening disability.
- Stage IIIA: Properly called elephantitis, with scleroindurative pachydermatitis, papillomatous lymphostatic verrucosis, no lymph transport capacity, and life-threatening disability.
- Stage IIIB: Extreme elephantitis with total disability.

Nonsurgical or conservative treatment options for lymphedema are primarily physical and include elevation, exercise, skin care (to prevent drying, cracking, and infection), limb elevation, elastic stockings or other pressure garments or bandages, physical therapy, manual lymph drainage, massage therapy, and pneumatic compression devices; these are often used in combination such as with complex decongestive therapy (CDT) or intermittent pneumatic compression therapy. CDT, also known as complex lymphedema therapy (CLT) or complete decongestive physiotherapy (CDP) is a noninvasive treatment that is considered a standard of care for lymphedema. The main goal of treatment of lymphedema is volume reduction of the affected limb, improvement in patient symptoms as well as a reduction of or elimination of any recurrent infections (Garza, et al., 2017; Hayes, 2020; Lasinski and Boris, 2002; Macdonald, et al., 2003).

Nonsurgical treatments can be intensive and may require extensive, and time-consuming, ongoing intervention. For some individuals the nonsurgical treatments yield inadequate lymphedema control. Lymphedema surgery has been proposed to reduce limb size and improve quality of life (QOL) and function when conservative nonsurgical management yields inadequate results. The goals of surgical management of lymphedema are to retain or restore function, alleviate pain and discomfort, reduce the risk of infection, prevent disease progression, improve cosmesis, and limit deformity. There is no consensus regarding the role of surgery, the optimal surgical approach, or the timing of an operative procedure for extremity lymphedema. Conservative or nonsurgical treatment options are often resumed after surgery to maintain surgical benefits (Mehrara, 2019, Bello, et al., 2017; Garza, et al., 2017; Hayes, 2020).

Operations for lymphedema are classified in two main categories: excisional operations and lymphatic reconstruction. Surgical management of lymphedema is categorized into two general approaches: physiologic techniques and reductive/ablative techniques. Physiologic procedures are proposed for individuals with early stage lymphedema prior to deposition of excess fat and extensive tissue fibrosis. Reductive/ablative techniques are proposed for individuals who present with more advanced lymphedema after fat deposition and tissue fibrosis has occurred. Individuals with more advanced lymphedema have been treated with physiologic techniques, however, the results are variable, and only limited numbers of patients have been analyzed (Mehrara, 2019). Recently combined surgical approaches, including a reductive/ablative and a physiological
procedure, have been investigated in order to address the different pathological components of lymphedema (Ciudad, et al., 2020).

The issue in monitoring success of surgical interventions is that there is no set standard for measuring degree of lymphedema and no standardized conservative treatment protocol before or after surgery. Additionally, presently there is no uniformity in the literature with regards to a protocol for diagnosing and monitoring lymphedema. Providers who follow these patients have reported objective and subjective improvements in the majority of lymphedema patients who have undergone surgical intervention. Most studies that report on the surgical management of lymphedema monitor limb circumference, volume reduction, and incidence of cellulitis as their endpoints. Recently, patient self-reported quality of life outcome tools specific for lymphedema have been included as an additional end point. The most commonly performed surgical procedures for lymphedema are lymphaticovenular anastomosis and vascularized lymph node transfer (Garz, et al., 2017).

A textbook review of the surgical treatment of lymphedema concluded that lymphatic microsurgery continues to be promising but it requires extensive microsurgical training. Long-term patency rates associated with documented clinical and functional improvement must be reproduced in a larger numbers of patients and several medical centers before this operation can be recommended for routine treatment or as an alternative to conservative measures (Trinidad-Hernandez and Gloviczki, 2013). Additional textbook information on surgical treatments for lymphedema states that surgery for lymphedema has been proven largely unsuccessful and should not be considered before CDT (Fort, et al., 2021).

Multiple ongoing clinical trials for the surgical treatment of lymphedema can be found on the ClinicalTrials.gov database.

Physiologic Techniques

The surgical approaches include lymphatic bypass procedures, flap transposition procedures, and vascularized lymph node transfers. The lymphatic bypass procedures are the most commonly used of the physiological techniques. These procedures require a high level of technical skill, and it is recommended that performance of these procedures be reserved for those surgeons who have expertise in microvascular surgery (Mehrara, 2019).

Lymphatic bypass procedures: The lymphatic bypass procedures are categorized as lymphatic-lymphatic bypass and lymphovenous bypass procedures. Lymphaticovenular bypass procedures are a variation of the lymphovenous approach. Lymphatic bypass procedures have been used in the following settings: failure of nonoperative management; recurrent cellulitis or lymphangitis; dissatisfaction with compression garments or impaired quality of life. Contraindications to lymphatic bypass procedures include: extensive tissue fibrosis, late-stage lymphedema changes, venous hypertension, recurrent cancer in the ipsilateral extremity or metastatic disease, patient noncompliance with compression therapy or postoperative care plans. There are several methods used to perform a bypass procedure. There is no consensus for the specific type of lymphatic bypass procedure to be performed; these decisions are made based on surgeon preference and experience. To help identify the lymphatic vessels, prior to making an incision, isosulfan blue dye is injected into the subcutaneous tissue distal to the operative site. The most common approaches are described as follows (Schaverien, et al., 2020; Mehrara, 2019; Garza, et al., 2017):

- **Lymphatic-lymphatic bypass**: Lymphlymphatic bypass transfers soft tissue resected from an unaffected site to a site that is proximal to that affected by lymphedema and followed by a direct anastomosis of the lymphatic vessels.
- **Lymphovenous bypass**: Lymphovenous bypass is an alternative to the lymphatic-lymphatic technique. A vein interposition graft is used to connect the distal lymphatic vessels with vessels proximal to the obstruction. Proximal vessels used in this technique include lymphatic vessels, adjacent veins, or deeper and larger veins. Multiple lymphatic vessels can be anastomosed to the vein graft.
- **Lymphaticovenular anastomosis (LVA)**: This is a super microsurgical technique used to anastomose distal subdermal lymphatic vessels and adjacent venules less than 0.8 mm in diameter. Distal subdermal lymphatics are less affected by lymphedema and are more readily available for a bypass procedure than deeper lymphatic channels.
- **Vascularized lymph node transfer (VLNT)**: This approach utilizes microsurgical techniques to transfer lymph nodes from an unaffected site to the affected limb with the intent of restoring lymphatic function.
and promoting lymph drainage. A limiting factor of this approach is that lymphedema can develop in the donor extremity.

- **Flap/tissue transfer:** To avoid risk of donor extremity lymphedema or visible donor-site scars, intraabdominal lymph node flap options are increasingly being performed, including the omental (gastroepiploic) flap, which may be harvested laparoscopically, and the jejunal mesenteric flap. Results from these approaches have yet to be fully validated.

Reductive/Ablative Techniques

Reductive techniques, also called ablative techniques, remove fibrofatty tissue that has formed from sustained lymphatic fluid stasis. Reductive techniques include direct excision and liposuction (Mehrara, 2019; Trinidad-Hernandez and Gloviczki, 2013):

- **Direct excision:** A variety of direct excision procedures have been described for the treatment of extremity and genital lymphedema. Excisional operations remove excess subcutaneous tissue to decrease the volume of the extremity. Lymphedematous tissues are excised together, including the skin and soft tissues. The resulting defects are covered either with tissue flaps (e.g., Sistrunk, Homans, Thompson procedures) or with skin grafts (e.g., Charles procedure). Prolonged hospitalization, poor wound healing, large surgical scars, sensory nerve damage, and residual edema of the foot and ankle are reported problems. These common complications limit such procedures to individuals with disabling, advanced or end-stage lymphedema that is not responding to maximal medical therapy.

- **Liposuction:** This ablative surgery removes fatty and fibrotic depositions through multiple small incisions of the affected limb in patients with more advanced lymphedema. It is sometimes called suction-assisted lipectomy. It is proposed for patients with stage II or III lymphedema. Postoperative placement of compression garments prevents swelling recurrence, must be refitted regularly, and may be required for life to maintain surgical benefits.

U.S. Food and Drug Administration (FDA)

The FDA does not regulate surgical procedures. Any medical devices, drugs, biologics, or tests used as a part of this procedure may be subject to FDA regulation.

Literature Review

Lymphatic bypass procedures: In a prospective cohort study, Salgarello et al. (2018) reported the outcomes of patients’ health-related quality of life (HRQoL) after super microsurgical lymphaticovenular anastomosis (LVA) for lower and upper extremities lymphedema (ULL or LLL) (n=70). Forty-four patients (62.8%) were affected by ULL and 26 (37.1%) were affected by LLL. Five patients (7.1%) had a primary lymphedema, while 65 patients (92.9%) were affected by secondary lymphedema. The study included Caucasian patients with ULL and LLL. The intervention was super microsurgical lymphaticovenular anastomosis (LVA). There was no comparator. Quality of life (QoL) was assessed by lymphedema QoL questionnaire (LyMQoL), which is a validated disease-specific instrument to measure the impact of lymphedema on patient’s lives, covering four domains: function, body image, symptoms, and mood. There was a mean follow-up of 8.5 months (range: 2–21 months). Additionally, the episodes of lymphangitis and the need for conservative therapy before and after surgery was evaluated. Among the sample, 61 patients (87.1%) underwent physical therapy or a rehabilitation program preoperatively. Postoperatively, the number of subjects who needed physical therapy, including manual compression, lymphatic massage, bandaging, or compression garments, remained stable, but 58.6% of the patients had a reduction in the number of sessions and/or compressive classes necessary to their well-being, difference in which was also significant (p<0.01). The average for overall QoL score before surgery was 5.5 for the upper limb group and 5.7 for the lower limb group. After a mean follow-up ranging from 8.5 months, there was an average increase for the global QoL score of 2.3 for upper limb and 2.6 for lower limb. The QoL average observed postoperatively was 7.9 for upper limb and 8.3 for lower limb (p<0.001). A statistically significant improvement in all four domains (p<0.01) was reported after surgery, being present from the first postoperative months for both upper and lower extremities. No adverse events were reported. The authors concluded that lymphaticovenular anastomosis improves HRQoL in patients affected by ULL and LLL. Additionally, both a reduction of episodes of lymphangitis and a decrease in the need of conservative therapy were observed in this cohort of patients. This study was limited by lack of a comparator group and short-term follow-up.
In a retrospective study, Engel et al. (2018) investigated the outcome of lymphedema microsurgery with or without microsurgical breast reconstruction for breast cancer-related lymphedema (BCRL) (n=124). Patients with BCRL who underwent three treatment modalities without or with microsurgical breast reconstruction were included in this study as groups I and II. (Cheng grading: grade I: n = 56; grade II: n = 45; grade III: n = 20; grade IV: n = 3). Patients were offered the lymphedema microsurgery depending on the availability of patent lymphatic ducts on indocyanine green lymphography if they failed to complete decongestive therapy. Patients who underwent simultaneous lymphovenous anastomosis and vascularized lymph node flap transfer were excluded from this study. Group I consisted of 87 patients who did not receive microsurgical breast reconstruction, and 30 (group Ia), 23 patients (group Ib), and 34 patients (group Ic) were treated with complete decongestive therapy, lymphovenous anastomosis, and vascularized lymph node flap transfer, respectively. Of the 37 patients in group II who underwent microsurgical breast reconstruction, 22 were treated with complete decongestive therapy (group Iia), 4 received a lymphovenous anastomosis (group Iib), and 11 were treated by vascularized lymph node flap transfer (group Iic). The circumferential difference, reduction rate, and episodes of cellulitis were used to evaluate the outcome of treatments. Mean follow-up period was 19.1 +/- 5.3 months (range 5.7-62.8 months). Improvements in the circumferential difference (12.8±4.2% vs 11.5±5.3%), the reduction rate (20.4±5.1% vs 14.7±6%), and episodes of cellulitis (1.7±1.1 vs 2.1±2.4 times/yr) did not significantly differ between groups I and II (p=0.06, 0.07, and 0.06, respectively). In both groups, vascularized lymph node flap transfer was significantly superior to lymphovenous anastomosis or complete decongestive therapy in terms of improvements in the circumferential difference, reduction rate and episodes of cellulitis (p=0.04, 0.04, and 0.06, respectively). The re-exploration rate was 16.9% (n=21), and the overall complication rate was 8.1% (n=10). Flap losses did not occur. One (in group II) of 18 patients who underwent vascularized groin lymph node flap transfer developed right lower limb lymphedema, which was successfully treated with a lymphovenous anastomosis in the ankle one year after surgery. None of the 27 patients who received vascularized submental lymph node flaps developed face lymphedema. The authors concluded that microsurgical breast reconstruction did not improve the outcome of BCRL. Improvements in BCRL were better for lymphatic microsurgery than complete decongestive therapy. Vascularized lymph node flap transfer provided greater improvements in the BCRL than lymphovenous anastomosis.

In a prospective cohort study, Poumellec et al. (2017) analyzed the results of lymphaticovenous anastomoses (LVA) on 31 patients and reviewed the existing literature. This study comprised 31 female patients presenting lymphedema of the upper limb following treatment for breast cancer for which surgical treatment was given by microsurgery consisting of three stepped LVA performed in an outpatient setting. The post-LVA arm circumference was measured at three levels (wrist, forearm, and arm) in 31 female patients. Mean follow-up time was 12.8 months. Reduction in the circumference was 22.5, 21.32, and 30.2%, respectively, in the wrist, forearm, and arm. Functional improvement was observed in the majority (84%) of patients ranging from moderate to substantial. Only two patients had no result. The only patients to experience recurrence were those with a high level of lymphedema. The review of the current literature and the present study revealed modest results in terms of decreased excess volume, although a major improvement in function points to LVA as a useful technique in this indication. Progress in imaging techniques has enhanced the results achieved with this procedure, although further studies on recurrence rates are needed with a follow-up greater than one year.

In a prospective study, Cornelissen et al. (2017) analyzed the effect of lymphaticovenous anastomosis (LVA) on quality of life (n=20). Inclusion criteria consisted of an evidenced upper limb lymphedema secondary to breast cancer in stage 1 or 2A according to the International Society of Lymphology (ISL) classification, patent lymphatic ducts seen by indocyanine green (ICG) lymphangiography and an absence of skin infections and complex decongestive therapy for at least three months. Quality of life was considered as the primary outcome, measured by the Lymphedema international classification of functioning (Lymph-ICF) questionnaire. Secondary outcomes were the use of compressive stockings and arm volume changes according to the Upper Extremity Lymphedema index (UEL-index). Measurements were obtained preoperatively and at one, three, six and 12 months postoperatively. The mean follow-up was 7.8 ± 1.5 months. Statistically significant improvement in quality of life was achieved in the total score and for all the quality of life domains after one year of follow-up (p<0.05). The discontinuation rate in compressive stockings use was 85%. The mean relative volume difference in UEL between a healthy and lymphoedematous arm preoperatively was 14.92 ± 8.01 and postoperatively 12.99 ± 7.47. The difference did not reach statistical significance (p=0.582). This study is limited by small sample size, lack of a comparator and short-term follow-up.
Forte et al. (2020) conducted a systematic review to analyze the surgical outcomes of lymphaticovenous anastomosis (LVA) in the treatment of lower extremity lymphedema (LEL). A total of 58 studies met inclusion criteria for a total of 1363 patients with LEL who had undergone LVA. Follow-up was one to 87 months. The number of patients in each study ranged from one to 216 with a female predominance in all. The mean age at presentation ranged from six to 94 years. The mean duration of LEL ranged from 22 days to 585 months. The patients included in the studies more commonly had secondary lymphedema. The studies included in this review describe variations in surgical techniques, number of anastomoses, and supplementary interventions. All, except one study, reported positive outcomes based on limb circumference and volume changes or subjective clinical improvement. The largest reduction rates achieved after LVA for LEL ranged between 51.1 to 63.8%, with better results presented in early stages of lymphedema. Almost all studies reported a decrease in episodes of infection. The reported limitations include the considerable heterogeneity among the reported outcomes in each study. Therefore there is a potential for bias in interpreting data, as it is possible that not all studies captured reliable comorbidity data or outcomes over a long-period of time. Larger, randomized, multicenter studies are needed to validate the results found from this systematic review of the literature.

Rosian et al. (2019) conducted a systematic review evaluated the clinical effectiveness and safety of lymphovenous anastomosis (LVA) in comparison to conservative or other surgical treatments for primary or secondary lymphoedema patients. A total of five studies (n=217) were assessed eligible for final inclusion (one non-randomized controlled trial and four prospective single-arm studies). A total of 204 patients were treated with LVA and 13 with vascularized supraclavicular lymph node transfer (VSLNT). The mean follow-up periods differed considerably between the studies with a range of 7.8 to 30.4 months. The patients suffered from primary or secondary lymphoedema, mostly due to breast cancer and its treatments (e.g., radiation or chemotherapy). All studies showed a moderate to high risk of bias. The strength of evidence for the effectiveness and safety of LVA is very low which means that the evidence either is unavailable or does not permit a conclusion. There were various methods of LVA performed in the studies. Data on upper extremity lymphoedema were reported more frequently. The estimation of ongoing post-interventional treatments (e.g., compression treatment) is scarce and varied.

Cornelissen et al. (2018) conducted a systematic review to assess the clinical effects (improvement in arm circumference and quality of life) of lymphaticovenous anastomosis (LVA) in treating breast cancer-related lymphedema (BCRL). A total of 15 studies, 11 prospective and four retrospective studies, were included. All studies reported on BCRL in terms of volume or circumference reduction. Study population consisted of 268 patients; 263 patients presented with BCRL, one patient with upper limb lymphedema after an elbow fracture, and four patients with primary upper limb lymphedema. A control group was provided in two articles. One study included a control group where the patients who only received continuous bandaging were compared with those who underwent the intervention and continuous bandaging. Another study included several groups to compare the effect of different interventions, including LVA and lymph node transfers in combination with or without microvascular breast reconstruction, to groups only receiving decongestive therapy. The average follow-up was 20 months, ranging from two months to eight years. Thirteen out of the included studies reported a positive surgical effect on reduction in volume or circumference. Twelve articles mentioned qualitative measures, being symptom improvement and improvement in quality of life. The number of patients who experienced symptoms relief ranged from 50%-100% in the studies. Adverse events were not reported. Many limitations were reported. The volume and level of evidence of the studies on the effects of LVA in this specific patient population were low. No randomized controlled trial could be included, which displays the lack of solid evidence on this topic. The follow-up time in some studies was too short, with follow-up ranging from two months to six years. It remains unknown whether this reduction was maintained over a period of time. A broad variety in the years from onset till the LVA contributed to the heterogeneity of our study population. The way the outcomes were described varied enormously between studies. Some reported in terms of absolute or relative volume reduction while others mentioned circumference reduction. The authors concluded that heterogeneous results of LVA in the volume/circumference reduction for the treatment of BCRL were reported among studies. Improvement of the subjective symptoms was presented in most of the studies. This review showed that LVA may be particularly useful to improve quality of life in breast cancer-related lymphedema, in particular, in early-stage lymphedema in the distal arm. Further prospective, randomized controlled studies are required to confirm the effectiveness of LVA and to determine the appropriate candidates for this procedure.
Basta et al. (2014) conducted a systematic review and meta-analysis to quantify the efficacy and safety of microsurgery for lymphedema. Studies meeting criteria for inclusion were rated on methodologic quality based on the American Society of Plastic Surgeons levels of evidence. Demographic information, cause of lymphedema, and surgical technique were recorded. Quantitative change in lymphedema and perioperative complications were noted. A total of 27 studies were included, with 24 level IV evidence and three level III evidence. Overall, the study population consisted of 1619 patients, with a female-to-male ratio of approximately 3:2. The vast majority of patients suffered from postsurgical lymphedema associated with oncologic conditions, including breast cancer and various gynecologic cancers. The staging system of lymphedema was inconsistent across studies. Lymphovenous shunt procedures were performed in 22 studies and lymph node transplantation was performed in five studies. Excess circumference was reduced by 48.8 ± 6.0%, and absolute circumference was reduced by 3.31 ± 0.73 cm. Studies reporting change in volume demonstrated reduction in excess volume by 56.6 ± 9.1%, and absolute volume was reduced by 23.6 ± 2.1%. The incidence of no improvement in lymphedema postoperatively was 11.8% and 91.2% of patients reported subjective improvement. Approximately 64.8% of patients discontinued compression garments at follow-up. Complications included operative-site infection (4.7%), lymphorrhea (7.7%), reexploration for flap congestion (2.7%), and additional procedures (22.6%). Limitations of this study are: heterogeneity of the patient population; assessment modalities; and inconsistent reporting of complications. The authors concluded that lymph node transplantation may provide better outcomes compared with lymphovenous shunt, but well-designed head-to-head comparisons are needed to evaluate this further.

Scaglioni et al. (2017) conducted a systematic review on the topic of lymphovenous anastomosis (LVA), assessing both objective and subjective improvements in lymphedema of extremities. The primary endpoint was the objective of a subjective postoperative lymphedema reduction. Ten of the observational cohort studies were retrospective and eight prospectively designed totally 939 patients. No randomized controlled trials were available for inclusion. The number of patients per study ranged from 5-154. The duration of lymphedema prior to surgery ranged from 22 days to 29 years, although not all studies revealed this data. The studies included in this review describe significant variations in surgical techniques, number of anastomoses and supplementary interventions. All studies reported objective reductions in circumference measurements. Subjective symptom relief was found in 50-100% of the patients as well as a reduction in the number of cellulitis episodes in all investigated cases. In 11 out of 18 studies, additional compressive therapy was reported. The studies included in this review showed great heterogeneity. The authors concluded that the time of follow-up in the vast majority of the included studies was too short to make a reliable statement about sustained benefits of LVA surgery. Additionally, the deficiency of comparative designed studies and uniform outcome measurements continues to prevents drawing evidence based conclusions.

Guiotto et al. (2020) conducted a systematic review analyzing outcomes and complication rates from palliative procedures involving excision of the affected tissue and reconstruction by either local flaps or skin grafts, and reconstructive procedures to restore lymphatic flow through microsurgical lymphaticovenous anastomoses, (LVAs) for the treatment of genital lymphedema (GL). A total of 20 studies met the inclusion criteria (n=151). Eight were case reports, 11 retrospective studies, and one prospective study. Three main surgical treatments for GL were identified. Surgical resection and primary closure or skin graft was the most common procedure (46.4%) with a total complication rate of 10%. Surgical resection and flap reconstruction accounted for 39.1% of the procedures with an overall complication rate of 54.2%. Lymphovenous shunt (LVA) procedures (14.5%) had a total complication rate of 9%. The authors concluded that this review demonstrates a lack of consensus in both the preoperative assessment and surgical management of GL. Patients receiving excisional procedures tended to be later stage lymphedema. Patients in the excision and flap reconstruction group seemed had the highest complication rates. The authors concluded that microsurgical LVAs may represent an alternative approach to GL, either alone or in combination with traditional procedures.

In a 2019 UptoDate topic on surgical treatment of primary and secondary lymphedema the author states that "outcome data for physiologic techniques are from retrospective reviews of mostly lymphatic bypass procedures. Lymphatic bypass procedures result in highly variable responses, ranging from a complete response to none. The variability of results among the different studies is likely due to a number of factors including differences in assessing volume or circumference, length of follow-up, variable use of postoperative compression garments and/or physical therapy, and the use of non-standardized or non-validated questionnaires for subjective analysis. There has been no standardization of assessing volume of lymphedematous limb, and numerous techniques are
reported to approximate volume changes following an operative procedure. Few studies report the use of complimentary techniques (e.g., volume measurements and bioimpedance or lymphoscintigraphy) to corroborate measurements. Other caveats include mixed series of patients, either based upon etiology (e.g., primary congenital conditions, or secondary lymphedema following nodal resections, trauma, or filariasis); location of lymphedema (e.g., upper or lower extremity); and/or variable criteria for patient selection, selection of procedures, timing of intervention, and identification of suitable lymphatic vessels for bypass surgery” (Mehrara, 2019).

In a 2020 Hayes Health Technology Assessment on lymphovenous anastomosis (LVA) for the physiological microsurgical treatment of lymphedema, the authors summarize that the body of evidence pertaining to LVA for the treatment of patients with lymphedema is moderate in size and low in overall quality. The overall quality of the body of evidence on the efficacy and safety of LVA for the treatment of patients with lymphedema was rated as low due to individual study limitations and imprecision due to the small number and poor quality of the studies comparing LVA with other treatment modalities. There was a preponderance of noncomparative studies (seven studies) relative to comparative studies (four studies). Of the 11 studies, four comparative retrospective cohort studies and two noncomparative cohort studies were rated poor in individual study quality, and five noncomparative cohort studies were rated as very poor. Overall quality was based on the balance of benefits and harms and was assessed taking into consideration the quality of individual studies; the precision, directness, and consistency of data; and the applicability of the data to general practice. The current evidence suggests a potential benefit of LVA, but confirmation from prospective comparative or randomized controlled trials (RCTs) is required.

Vascularized Lymph Node Transfer (VLNT): In a prospective study, Chang et al. (2020) compared patients who underwent free flap breast reconstruction VLNT and anastomosis to a retrospective cohort of patients who underwent free flap breast reconstruction with VLNT alone for breast cancer–related lymphedema. A total of 33 patients underwent deep inferior epigastric perforator (DIEP) flap reconstruction with vascularized inguinal lymph node transfer and lymphovenous anastomosis, and 21 received a free flap with lymph node transfer alone. There were no significant differences in demographics, adjuvant chemotherapy, or radiation therapy. The average number of nodes removed was also equivalent (21.2 vs. 21.4 nodes). Two anastomoses per patient, on average, were performed (range, one to four) in the combined cohort, and all patients (100%) reported a subjective improvement in symptoms, compared with 81.0% of patients undergoing only lymph node transfer (p=0.019). Perometer measurements demonstrated a significant reduction between the groups at early time points [3 months, 40.7% vs. 20.0% (p=0.037); six months, 57.0% vs. 44.5% (p=0.043)]; however, the difference was not statistically significant at 12 months (60.4% vs. 57.8%; p= 0.43). The reported study limitations include small sample size and lack of randomization. The most significant limitation is the lack of a validated patient-reported outcomes and quality-of-life assessment.

In a retrospective study, Ciudad et al. (2020) noted that VLNT is an emerging surgical treatment for lymphedema. The authors compared the long-term clinical outcomes on upper limb lymphedema (ULL) and lower limb lymphedema (LLL) in patients treated with VLNT. The study included data from patients with International Society of Lymphology (ISL) stages II to III who underwent different VLNTs. Demographics pre-operatively, and clinical data (limb circumference, infectious episodes, lymphoscintigraphic studies) pre-operatively and post-operatively were recorded. Clinical outcomes by extremity were also analyzed. A total of 83 patients with lymphedema (ULL n=30, LLL n=53) were included. Mean follow-up time was 32.8 months (range of 24-49 months). Mean circumference reduction was higher in patients with ULL compared to with LLL (28.6 ± 8.6 versus 22.3 ± 10.1, p<0.001), and for patients with secondary lymphedema (24.8 ± 9.6, p<0.001) than for patients with primary lymphedema (18.9 ± 14, p>0.05). Infectious episodes per year pre-operative and post-operative showed that LLL patients had higher reduction on infection rate compared with ULL patients (2.4 ± 1.1 versus 1.9 ± 1.2, p<0.001). The authors concluded that VLNT is a promising surgical therapeutic option for patients with lymphedema. The findings of this study suggested that VLNT may have a more beneficial outcome in patients with ULL and with secondary lymphedema. The reported limitations of this study are the retrospective design and small sample size. The type of each flap used on the upper versus lower lymphedematous extremity was considered as a single group rather than individually.

In a case series study, Ciudad et al. (2019) described the clinical and patient reported outcomes of combining a physiologic (dual gastroepiploicVLNTs) and an excisional procedure (the modified radical reduction with
In a comparative study, Maruccia et al. (2019) retrospectively evaluated and compared surgical and patient-related outcomes in women affected by stage II and III post mastectomy upper limb lymphedema by two approaches: a combined physiological procedure of lymph node flap transfer and release of the axillary scar with fat graft versus only the lymph node transfer. Inclusion criteria was history of breast cancer treated with either mastectomy or breast-conserving therapy and axillary lymph node dissection; Stage II and III (International Society of Lymphology staging system) breast cancer-related upper limb lymphedema exclusively treated by combined lymph node transfer to distal site and axillary scar release with fat graft or just with lymph node transfer to the distal site. Patients were excluded if they underwent the ancillary excisional procedure to treat lymphedema. Group A was combined procedure (VLNT + fat graft) (n=18); Group B had VLNT only (n=21). The primary outcome measure was the reduction rate (RR) of upper limb circumference (above elbow and below elbow). The secondary outcome was incidence of cellulitis and the specific quality of life parameters. An average follow-up time to lymphodynamic evaluation was 29 months (range, 24–38 months) for Group A and 32 months (range 28–44) for Group B. Flap survival rate was 100%, with no donor site morbidity in all patients. A statistically significant difference between the circumference reduction rates (RR) at above elbow level was observed at 3 and 6 months of follow-up comparing the two groups (p < 0.00001), with higher values in Group A than in Group B. No significant difference was detected comparing RR values at above and below elbow at 12 and 24 months postoperatively. LYMQL metrics showed significantly better scores (p<0.0001) in all domains at all follow-up appointments in Group A. No adverse events were reported. This study was limited by small sample size. The authors advocate further larger research to corroborate and expand the results of the study.

In a retrospective observational study, Leppäpuska et al. (2019) reported results of chronic lymphedema patients (n=21) who have undergone lymph node transfer and liposuction simultaneously in one operation and compared the results with patients who have undergone lymph node transfer without liposuction. Lymphangiogenesis associated growth factor (VEGF-C, VEGF-D) concentrations in the wound fluids of these patients was analyzed. The study included post mastectomy patients and one Hodgkin's lymphoma patient. All patients had a long history (range between 12 and 185 months, average 52 months) of chronic lymphedema with nonpitting edema and deposition of fat and fibrotic tissue after axillary lymphadenectomy and radiation therapy. Indications for procedure included clinically diagnosed lymphedema with more than 500mL of nonpitting edema compared with contralateral arm and reduced lymphatic function in lymphoscintigraphy. A total of 11 patients underwent lymph node transfer combined with liposuction (LIPO) of the affected arm and 10 patients underwent simultaneous breast reconstruction and lymph node transfer combined with liposuction of the affected arm. Compression therapy was started immediately after the operation and the patients used compression 24 hours/day at least six months postoperatively. Changes in clinical parameters (number of erysipelas infections, pain), arm volume, transport indexes calculated form lymphoscintigraphy images, and daily usage of compression garments were compared preoperatively and postoperatively and between groups (combined technique vs lymph node transfer). Mean follow-up time was 48.9 ± 15.4 months. In the combined technique group, the average arm volume excess decreased postoperatively 87.7%, and in 7 of 10 patients, the edema volume did not increase even without compression. Seventeen of 21 patients were able to reduce the use of compression garment. Lymphoscintigraphy results were improved in 12 of 15 patients and the improvement was significantly greater in the combined technique group than in the lymph node transfer group (p=0.01). The number of erysipelas...
In a prospective study, Maronado et al. (2017) evaluated the flap and the donor site morbidity of the lymphoscintigraphy parameters. This study was limited by small sample size and lack of a comparator. VGLN flap transfer in the treatment of BRCL is supported by limb circumference reduction and improvements in transplanted lymph node. No adverse events were reported. The authors concluded that the effectiveness of lymphoscintigraphy that included seven cases of faster contrast transport and four cases of visualization of 27.92% (range, 0% to 100%). Eleven (37%) patients showed radiological improvement in postoperative circumference measurement and radiologically with lymphoscintigraphy. No patient developed increase in limb circumference consistently decreased over time at 12 months. Overall quality of life scores steadily improved at 12 months. Pain and heaviness decreased over time at 12 months. There was a significant decrease in the number of infections of the affected arm postoperatively and a decreased need for physiotherapy. Complications occurred in 17 patients and consisted mainly of minor wound infections was decreased in seven of 10 patients and the decrease was significantly greater in the combined technique group than in the lymph node transfer group (p=0.02). In the lymph node transfer group, the average excess volume decreased postoperatively 27.5%. Fourteen of 27 patients were able to reduce the use of compression garments. Lymphoscintigraphy results were improved in 8 of 19 patients, and the number of erysipelas infections was decreased in one of three patients. There were no complications of the liposuction arm. Nine of 21 patients had minor complications (postoperative numbness, wound infection, limited skin necrosis, seroma) of the flap donor or recipient area. One patient needed a reoperation because of a thrombosis of the arterial anastomosis on the first postoperative day (wet liposuction technique). The authors concluded that liposuction can safely be performed with lymph node transfer in one operation to achieve optimal results in patients with chronic lymphedema. The combined technique provides immediate volume reduction and further regenerative effects on the lymphatic circulation. The significantly greater reduction in lymphoscintigraphy values and erysipelas infections suggests that the combined technique might be better for late-stage lymphedema patients than lymph node transfer alone. Limitations of this study include the retrospective nature of the data gathering and the small number of patients. A randomized controlled trial for stage II lymphedema patients comparing lymph node transfer, liposuction with controlled compression therapy, and the combination of these two techniques in the future would be feasible to compare these techniques in the same patient material.

In a case series study, Liu et al. (2018) evaluated the outcome of vascularized groin lymph node (VGLN) transfer using axilla as a recipient site in patients with breast cancer-related lymphedema (BCRL) and reported on radiological evidence of lymphangiogenesis in VLNT. A total of 30 patients with BCRL were included in this study with a mean age of 60. All 30 patients had axillary dissection. Twenty-seven patients received adjuvant radiotherapy. One patient had stage I lymphedema, 25 patients had stage II disease, and four patients had late stage II disease and 28 received chemotherapy. The mean duration of lymphedema was six years. All patients received preoperative decongestive physiotherapy. None of the patients had received prior surgery for lymphedema. Patients with active axillary disease (i.e., axillary lymph node metastasis or documented deep vein thrombosis of the axillary vessels), were excluded from this study. A skinless VGLN flap nourished by the superficial circumflex iliac vessels was transferred to the axillary region of the lymphedematous limb. Mean follow-up was 22.11 ± 7.83 months (range, 12-34 months). The outcomes were assessed clinically with limb circumference measurement and radiologically with lymphoscintigraphy. No patient developed increase in limb circumference, 9 (30%) patients had no limb circumference reduction, and 21 (70%) patients had limb circumference reduction. The mean circumference reduction rate of the lymphedematous limb was 47.06% ± 27.92% (range, 0% to 100%). Eleven (37%) patients showed radiological improvement in postoperative lymphoscintigraphy that included seven cases of faster contrast transport and four cases of visualization of transplanted lymph node. No adverse events were reported. The authors concluded that the effectiveness of VGLN flap transfer in the treatment of BRCL is supported by limb circumference reduction and improvements in lymphoscintigraphy parameters. This study was limited by small sample size and lack of a comparator.

In a prospective study, Maronado et al. (2017) evaluated the flap and the donor site morbidity of the supraclavicular (SC) VLNT. A review of a prospective database was performed for patients who had undergone SC VLNT to treat upper or lower extremity lymphedema. Flap and donor site complications were registered for each patient. One hundred consecutive patients with lower or upper extremity lymphedema underwent SC VLNT (84% from the right side) with a mean of 11-months follow-up (range 3-19 months). There were no flap loss but three flaps (3%) required re-exploration due to venous congestion of the skin paddle. Two patients had local infection and three patients developed chyle leak (3%) at the donor site but resolved spontaneously. No donor site secondary lymphedema was noted. This study focused on donor site. No limb size reduction outcomes were reported.

In a prospective study, Gratzon et al. (2017) evaluated the clinical, psychosocial, and functional outcomes of patients who underwent VLNT to the axilla for the treatment of upper extremity lymphedema after breast cancer therapy (n=50). Patients were evaluated preoperatively and postoperatively at one-, three-, six-, nine-, and 12-month intervals by circumferential measurements, pain/heaviness scales, and lymphedema quality of life (LYMQOL) questionnaires. Preliminary results showed a decrease in arm volumes by 34.57 % at one month, 52.03 % at three months, 42.34 % at six months, 65.23 % at nine months, and 58.68 % at 12 months. Pain and heaviness consistently decreased over time at 12 months. Overall quality of life scores steadily improved at 12 months. There was a significant decrease in the number of infections of the affected arm postoperatively and a decreased need for physiotherapy. Complications occurred in 17 patients and consisted mainly of minor wound infections.
complications. The authors reported that a consensus of surgical and postoperative protocols for VLNT is needed among studies to assess adequately its utility in the treatment of lymphedema. Although preliminary results are promising, larger studies with longer follow-up are needed to evaluate the efficacy and safety of this procedure.

In a randomized prospective control study, Dionyssiou et al. (2016) evaluated the effectiveness of free vascularized lymph node transfer (LNT) in stage II breast cancer-related lymphedema patients in comparison with non-surgical management. A total of 36 cases were included in this study and randomly divided in two groups: group A patients (n=18) underwent microsurgical LNT; followed by six months of physiotherapy and compression, while group B patients (n=18) were managed by physiotherapy and compression alone for six months. Patients of both groups removed their elastic garments after six months and were re-examined one year later. Limb volume reduction was observed in both groups; mean reduction was greater in group A (57%) than in group B (18%). Infection episodes in group A were significantly reduced compared to those in group B patients. All group A patients reported painless and feeling of heaviness-free extremities with overall functional improvement, while the corresponding changes in group B patients were no more than marginal. This study is limited by small sample size and short-term follow-up.

In a case series study, Saaristo et al. (2012) describe a modified breast reconstruction flap containing lymph nodes from the groin area to reconstruct both the missing breast and the lymphatic network anatomy in the operated axilla. Breast reconstruction was completed in 87 patients. For all patients with lymphedema symptoms (n=9), a modified lower abdominal reconstruction flap containing lymph nodes and lymphatic vessels surrounding the superficial circumflex vessel pedicle was performed. Operation time, donor site morbidity, and postoperative recovery between the two groups (lymphedema breast reconstruction and breast reconstruction) were compared. The effect on the postoperative lymphatic vessel function was examined. The average operation time was 426 minutes in the lymphedema breast reconstruction group and 391 minutes in the breast reconstruction group. The postoperative abdominal seroma formation was increased in patients with lymphedema. Postoperative lymphoscintigraphy demonstrated at least some improvement in lymphatic vessel function in five of six patients with lymphedema. The upper limb perimeter decreased in seven of nine patients. Physiotherapy and compression was no longer needed in three of nine patients. No edema problems were detected in the lymph node donor area. None of the operated patients with lymphedema reported pain, hernias, or edema symptoms in the donor area (low abdominal wall or lower limb). A total of three of nine patients with lymphedema have discontinued the use of compression and physiotherapy eight months to two years after the breast reconstruction and lymph node transfer. The authors reported that the lymph node transfer is still considered an experimental surgery and this study is the third report on the efficacy of the lymph node transfer in the treatment of lymphedema.

In a case series study, Gharb et al. (2011) reported the outcome of vascularized lymph node transfer with hilar perforators compared with the conventional technique. A total of 21 patients affected by early stage II upper limb lymphedema were included in the study. A total of 11 patients received a free groin flap containing lymph nodes, and 10 patients received vascularized inguinal lymph nodes with hilar perforators. Mean follow-up was 46 and 40 months, respectively. Complications, secondary procedures, circumference of the limb, and subjective symptomatology were registered. There was no statistical difference in the limb circumference measurements between the two groups preoperatively. Differences between preoperative and postoperative measurements were statistically significant only in the perforator-based group at the levels below elbow, wrist, and midpalm (p=0.004, 0.002, 0.007, respectively). All the other differences were not statistically significant. The number of secondary procedures was significantly higher in the standard group (p=0.03). There were two cases of partial flap loss and donor site lymphorrhea in the standard group. In both the groups, visual analog scale scores improved after the operation.

In a case series study, Lin et al. (2009) evaluated the outcome of vascularized groin lymph node transfer using the wrist as a recipient site in patients with post-mastectomy upper extremity lymphedema. A total of 13 consecutive patients underwent vascularized groin lymph node transfer for post-mastectomy upper extremity lymphedema. A vascularized groin lymph node nourished by the superficial circumflex iliac vessels was harvested and transferred to the dorsal wrist of the lymphedematous limb. The superficial radial artery and the cephalic vein were used as the recipient vessels. Outcome was assessed by upper limb girth, incidence of cellulitis, and lymphoscintigraphy. All flaps survived, and one flap required re-exploration, with successful
salvage. No donor-site morbidity was encountered. At a mean follow-up of 56.31 ± 27.12 months, the mean reduction rate (50.55±19.26%) of the lymphedematous limb was statistically significant between the preoperative and postoperative groups (p<0.01). The incidence of cellulitis was decreased in 11 patients. Postoperative lymphoscintigraphy indicated improved lymph drainage of the affected arm, revealing decreased lymph stasis and rapid lymphatic clearance.

In an initial report of this surgery which was performed in France, Becker et al. (2006) reported on retrospective data collected on 24 patients treated with inguinal lymph node transfers to the axillary region. Patients with lymphedema for more than five years underwent lymph node transplantation. In this case series, upper limb perimeter returned to normal in 10 cases, decreased in 12 cases, and remained unchanged in two cases. The 10 cases in which upper limb perimeter returned to normal were described as being “cured.” The authors reported that “no current gold standard for evaluation of lymphedema exists; hence, evaluating results of treatments remains difficult and appears controversial”. Long-term results were evaluated according to skin elasticity and existence of infectious disease, decrease or disappearance of the lymphedema assessed by measurements, effects observed on isotopic lymphangiography, and ability to stop or to discontinue physiotherapy after six months. Long-term results were also evaluated according to the duration of the lymphedema before surgery and occurrence of downstaging after surgery. Physiotherapy was discontinued after six months in 14 patients and after 12 months in one patient. In the nine other patients, physiotherapy remained necessary and was performed once weekly in seven patients. Physiotherapy was thus discontinued in 15 patients (62.5%). No results were reported after 12 months.

Fish et al. (2020) conducted a systematic review to analyze the published evidence on predicting long-term health-related quality of life (HRQoL) outcomes for vascularized lymph node transfer (VLNT) and complex decongestive therapy (CDT) used in the treatment of breast cancer-related lymphedema. Studies using validated measurement instruments to assess HRQoL in patients with breast cancer-related lymphedema relative to baseline were included. A total of 16 articles were included in this review. Evidence regarding VLNT was reviewed from two prospective cohort studies involving 65 patients, and HRQoL was evaluated using the Lymphoedema Quality of Life Study questionnaire. Data on VLNT indicated favorable HRQoL outcomes at 12-month postoperative follow-up. Evidence regarding CDT was reviewed from 14 prospective cohort and randomized controlled studies involving 569 patients, and HRQoL was evaluated using the 36-Item Short Form Health Survey, Functional Assessment of Cancer Therapy-Breast, European Organization for Research and Treatment of Cancer, and Functional Living Index-Cancer measures. Data on CDT demonstrated variable association with HRQoL, and a majority of articles reported improvement in at least one subscale. The use of diverse patient-reported outcome measures and variability in CDT protocol limited interpretation of results in this population and between treatment modalities. The authors reported that additional studies are needed to better understand the best lymphedema treatment options and direct evidence-based care.

Forte et al. (2020) states that surgical treatment of lymphedema can be conducted alone or in combination with microsurgical autologous breast reconstruction. The authors conducted a systematic review regarding autologous breast reconstruction for deep inferior epigastric perforators (DIEP) or muscle-sparing transverse rectus abdominis myocutaneous (ms-TRAM) and vascularized lymph node transfer (VLNT) in patients with lymphedema following breast cancer surgery. Eligibility criteria included investigations reporting data studies evaluating female patients with lymphedema in an upper extremity after breast cancer who underwent autologous breast reconstruction combined with VLNT. The search resulted in six studies (n=103). The follow-up period ranged from 3-64 months. The population included patients with initial lymphedema symptoms, for which the duration varied from 6-182 months before the surgical treatment. The studies described groin lymph node transfer as treatment for lymphedema. In most of the studies, all patients reported a reduction of arm circumference, volume, and symptoms of the upper extremity with lymphedema comparing the preoperative to the postoperative period. In three studies, six patients did not notice any arm circumference reduction during the follow-up period. Overall, patients experienced successful breast reconstruction. All authors reported reduction of the circumferential size of the affected upper limb, as well as a decrease in cellulitis, in addition to favorable breast reconstruction results. A reported limitation of the studies is that the authors could not quantitatively evaluate the circumference or volume reduction, as well as cellulitis rate reduction, since several authors did not quantify it in detail in the studies. The authors concluded that although breast reconstruction combined with VLNT is a promising treatment, it requires additional studies including prospective and randomized trials to validate its utility.
Forte et al. (2019) conducted a systematic review of vascularized omentum lymph node transfer (VOLT) in patients with lymphedema. A total of six studies (n=137) fulfilled the study eligibility criteria. Three studies described single VOLT, two studies described double VOLT and one study described two cohort patients, one that was treated with single VOLT and another one that was treated with double VOLT. The population included 88 patients with upper extremity lymphedema, 78 of which had lymphedema after breast cancer treatment, 48 patients had lower extremity lymphedema, and two patients had breast lymphedema. Follow-up ranged from 0.5-48 months. Postoperative reduction of arm volume, circumference, and symptoms of the upper extremity were reported in all patients. In one study, seven patients did not notice any extremity circumference reduction during the follow-up period and four patients noticed an increase in arm volume. Flap loss was reported by two authors in a total of two patients. Overall, patients experienced successful lymphedema treatment with VOLT. All authors presented results with reduced circumferential size of the affected upper and lower limbs, as well as reduction of the infectious intercurrences, such as cellulitis, with a small incidence of associated complications. The reported limitations of this review included a small number of studies and, consequently, a small cohort. The lack of prospective randomized studies and the nonstandardization of the obtained results make it difficult to establish protocols. Finally, the absence of objective measurement of arm circumference and volume, as well as cellulitis rate reduction, impeded a quantitative evaluation of outcomes. In addition, the duration of follow-up in the studies is too short to evaluate the persistent benefit of these procedures.

In a review of the literature, Pappalardo et al. (2019) concluded that vascularized lymph node (VLN) transfer has become a promising treatment for moderate and advanced stages of extremity lymphedema. Consensus among the experts regarding most of the current issues, including the mechanism of VLN transfer, staging system or donor and recipient sites, is needed to provide more predictable outcomes. Patient selection criteria, careful preoperative evaluation of donor site and recipient site and mastering anatomy and surgical skills are key factors for successful treatment of lymphedema of the extremities.

In a review of the literature, Scaglioni et al. (2018) evaluated outcomes and complications of vascularized lymph node transfer (VLNT) for the treatment of lymphedema. A total 24 studies encompassing 271 vascularized lymph node transfers were included. There were 260 free vascularized lymph node transfers performed, and 11 pedicle lymph node flaps. Measurements reported were heterogeneous. The follow-up time ranged from 1 to 96 months. The inguinal nodes were the most commonly used donor site followed by the lateral thoracic lymph nodes. The lateral thoracic lymph nodes were the least effective and had the highest complication rates (27.5%) compared to other lymph node donor sites (inguinal: 10.3% and supraclavicular: 5.6%). Upper extremity lymphedema responded better compared to lower extremity (74.2 vs. 53.2%), but there was no difference in placing the lymph nodes more proximally versus distally on the extremity (proximal: 76.9% vs. distal: 80.4%). The number and degree of improvement following VNLT was not thorough or consistently documented in the majority of studies. Twenty-five patients underwent additional adjuvant debulking procedures secondary to the lymph node transfers. The authors reported that more structured, prospective research to document outcomes in a more objective fashion is needed to know which donor and recipient site is best. Many of the studies included in the current analysis did not specify these details. Standardization in the parameters used to measure lymphedema following surgical intervention is needed.

Raju et al. (2014) completed a review of the literature for VLNT with updates and comparisons on current application, techniques, results, studies and possible future implications. The authors concluded that “Although the results with the use of VLNT for treatment of lymphedema have been largely positive, further exploration into standardized protocols for diagnosis, treatment optimization, and patient outcomes assessment is needed”.

Flap/Tissue Transfer: In a prospective study, Nguyen et al. (2017) report the long-term outcomes of the minimally invasive free vascularized omental lymphatic flap for the treatment of lymphedema. All consecutive patients with advanced lymphedema undergoing minimally invasive free vascularized omental lymphatic flap transfer were included (n=42). Perioperative evaluation included qualitative assessments, lymphoscintigraphy, and volumetric measurements with a mean follow-up of 14 (3–32) months. Subjective improvements were noted in 83% of patients. Mean volumetric improvement was 22%. Complications occurred in 16% (n=7) of patients. There was one episode of pancreatitis and one flap loss. Postoperative imaging revealed viable lymphatic transfers. Cellulitis history was present in 74% (n=31) patients with post-operative cellulitis occurring in 5% (n=2) patients. The collection of quality of life outcomes measures was incomplete.
Reductive/Ablative Techniques: In a prospective registry study, Hoffner et al. (2018) evaluated the five-year results after liposuction in combination with controlled compression therapy (CCT). Between 1993 and 2012, a total of 127 consecutive women were operated on. Twenty-two could not be followed for five years: 18 died before the last follow-up (10 because of breast cancer and eight of other causes), one had recurrence of breast cancer, one stopped using CCT, one moved abroad, and in one case, data from the therapist was missing. A total of 105 women with non-pitting lymphedema remained in the study. Inclusion criteria was: diagnosis of secondary arm lymphedema following breast cancer treatment; a significant excess volume, that is the volume of the affected arm was at least 10% larger than that of the unaffected arm and concomitant subjective discomfort; inability of previous conservative treatment to reduce the excess volume completely; no or minimal pitting (<5mm) as a sign of adipose tissue hypertrophy; and accustomed to the use of compression garments preoperatively. Exclusion criteria included active cancer, wounds, or infections and patients unwilling to undergo continuous postoperative CCT. Power-assisted liposuction was used during the period 1993–1997, the “dry technique”. During the period 1997–2012, a tourniquet was utilized in combination with the tumescence technique to minimize blood loss. There was no comparator. The primary outcome was excess volume reduction. Standardized forms were used to collect pre-, peri-, and postoperative data. Patients were followed up regularly at 0.5, one, three, six, nine months and at one year after surgery, and then every year. If complete reduction was not reached at one year, three-month visits were scheduled. Patients with complete reduction at two years were followed up by their previous lymph therapist, who reported arm volumes yearly. Total aspirate mean volume was 1,831 ± 599 ml (range, 650–3,780) for all patients (n=105). Postoperative mean reduction five years postoperatively was 117% ± 26% as compared with the healthy arm. No adverse events were reported. The authors concluded that liposuction combined with CCT is an effective and safe method for treatment of chronic, nonpitting arm lymphedema resistant to conservative treatment. A mean reduction of 117% was achieved, and such normalization can be anticipated in patients with an excess volume of around 3,000 ml. This study is limited by small sample size and no comparator.

In a cohort study, Lamprou et al. (2017) reported the long-term results of circumferential suction-assisted lipectomy (CSAL) in end-stage primary and secondary lymphedema of the leg. Patients were treated with CSAL for unilateral chronic irreversible lymphedema of the leg (n=88). Compression therapy was resumed after surgery. Leg volumes were measured before surgery, and at one, six, 12 and 24 months after the procedure. A total of 47 patients with primary lymphedema had a median preoperative volume difference between affected and unaffected legs of 3686 (interquartile range [IQR]), 2851 to 5121) ml. Two years after surgery, this volume difference was reduced to 761 ml, a 79% reduction. In the 41 patients treated for secondary lymphedema, the median preoperative volume difference was 3320 (IQR 2533-4783) ml, decreasing after two years to -38 ml indicating a 100% reduction in excess volume on average. The preoperative volume difference and the sex of the patient significantly influenced the final outcome after two years. The outcome was not related to body mass index (BMI) or other patient characteristics. Subsequent continuous compression, weight control, physical exercise, and lifestyle alterations are still needed to achieve the maximum effect.

In a cohort study, Hoffner et al. (2017) assessed liposuction plus controlled compression therapy in patients with lymphedema of an arm secondary to breast cancer treatment. The aim of the study is to test the hypothesis that liposuction improves health-related quality of life (HRQoL). Sixty female patients with arm lymphedema were followed for a one-year period after surgery. The 36-item short-form health survey (SF-36) was used to assess HRQoL. Patients completed the SF-36 questionnaire before liposuction, and after one, three, six, and 12 months. They reported a mean difference between affected and unaffected limbs of 1365 mL (standard error of the mean [SEM] 73) at baseline, which declined to 75 mL (SEM 35) at one month, −26 mL (SEM 40) at three months, −133 mL (SEM 40) at six months, and −213 mL (SEM 35) at one year, indicating > 100% reduction in excess volume on average. They reported that 82% (49 of 60) patients had complete resolution of their lymphedema. The adipose tissue volume removed at surgery was 1373 – 56mL. One month after liposuction, better scores were found in mental health. After three months, an increase in physical functioning, bodily pain, and vitality was detected. After one year, an increase was also seen for social functioning. The physical component score was higher at three months and thereafter, while the mental component score was improved at three and 12 months. Limitation of this study include: a lack of control or comparator group; observational study; insufficient length of follow-up to determine long-term outcomes.
In a 2019 UptoDate topic on surgical treatment of primary and secondary lymphedema the author states that most of the outcome data for reductive/ablative techniques for the treatment of lymphedema are from retrospective reviews, small case series and case reports. At this time there are no randomized trials to determine the optimal reductive procedure to treat lymphedema (Mehrara, 2019).

Systematic Reviews: Markkula et al. (2019) conducted a Cochrane systematic review to assess and compare the efficacy of surgical interventions for the prevention of the development of lymphedema (LE) in the arm after breast cancer treatment and to assess and compare the efficacy of surgical interventions for the treatment of established LE in the arm after breast cancer treatment. The authors considered any surgical intervention for the treatment or prevention of secondary LE of the arm after breast cancer treatment. Both reductive and reconstructive techniques were considered including, but not limited to: liposuction; lymphaticovenular anastomoses; lymphatico-lymphatic bypass; lymph node transfer. All randomized controlled trials (RCTs) that compared a surgical intervention for the treatment or prevention of LE in the arm after breast cancer treatment to either standard intervention (conservative measures such as compression garments, lymphatic massage, bandaging, and intermittent pneumatic compression), placebo intervention (surgery performed without the critical surgical step), or another surgical intervention were included in this review. Three studies (n=131) were included: two studies reported on the effectiveness of lymphaticovenular anastomosis as part of preventive management protocols in the prevention of breast cancer-related lymphedema and one study reported on the effectiveness of vascularized lymph node transfer in the treatment of established breast cancer-related lymphedema. The author conclusions state that there is currently not enough evidence to support the widespread adoption of lymphaticovenular anastomosis or vascularized lymph node transfer techniques. This review has shown that when these techniques are applied by well-trained surgeons who are expert in its use, there is potential to make a real impact in outcomes for breast cancer patients but there is currently not enough evidence to support the widespread adoption of lymphaticovenular anastomosis or vascularized lymph node transfer techniques.

In a systematic review, Forte et al. (2019) investigated the efficacy of the combination of liposuction and lymph node transfer reporting the outcomes in breast cancer-related lymphedema patients. From a total of 20 articles, five met inclusion criteria (n=1-48). All patients included in these studies had stage II or III lymphedema. Two studies considered liposuction as the first step followed by lymph node transfer, two considered lymph node transfer as the first step followed by liposuction, and one applied both procedures simultaneously. A meaningful volume reduction was achieved in all cases. Patients who underwent lymph node transfer first followed by liposuction appeared to have the best outcomes. The authors concluded that this systematic review suggests that the combination of lymph node transfer and liposuction is a potential surgical treatment that may improve outcomes achieved by one single procedure in patients with stage II to III breast cancer-related lymphedema. A limitation of this review is heterogeneity due to the nature of the studies, the presence of different protocols, and the follow-up of patients, which makes it difficult to compare results and perform statistical analysis.

In a systematic review (SR), Carl et al. (2017) reviewed the literature to develop a treatment algorithm based on highest-quality lymphedema research. The SR addressed lymphovenous anastomosis (LVAs), vascularized lymph node transfer (VLNT), liposuction, excision, and multiple/combination surgical approaches for the treatment of lymphedema. The inclusion criteria was surgical therapy of extremity lymphedema studies with ≥ eight patients. A total of 69 articles met inclusion criteria and were assigned Methodological Index for Nonrandomized Studies (MINORS) scores with a maximum score of 16 or 24 for noncomparative or comparative studies, respectively. The average MINORS scores using noncomparative criteria were 12.1 for excision, 13.2 for liposuction, 12.6 for LVA, 13.1 for VLNT, and 13.5 for combined/multiple approaches. Loss to follow-up was the most common cause of low scores. A total of 39/69 cohort studies rated as high quality by MINORS instrument were included in the review: LVA (12), VLNT (10), excision (5), liposuction (4), combined/multiple approaches (8). The sample size was 8-2600. Follow-up 6-120 months. In studies measuring excess volume reduction, the mean reduction was 96.6% for liposuction, 33.1% for LVA, and 26.4% for VLNT. Included excision articles did not report excess volume reduction. The authors stated that further studies with a particular focus on patient follow-up will improve the validity of lymphedema surgery research. The authors also noted that the biggest drawback of this study was the heterogeneity of the included studies in terms of lymphedema stage and etiology, method of assessing surgical outcomes, and inconsistent reporting of complications and quality of life outcomes. Additionally, to better delineate indications for LVA versus VLNT and validate their proposed algorithm, more head-to-head comparative studies that adopt an accepted staging system, such as the ISL.
In a systematic review, Cormier et al. (2012) evaluated the surgical treatment of lymphedema. A total of 20 retrospective and prospective studies met inclusion criteria; procedures were categorized as excisional procedures (e.g., debulking, amputation, and liposuction) (n=8), lymphatic reconstruction (n=8), and tissue transfer (e.g., lymph node transplantation, pedicled omentum, bone marrow stromal cell transplantation) (n=4). The reported incidence of volume reduction of lymphedema in these studies varied from 118% reduction to a 13% increase over the follow-up intervals ranging from six months to 15 years. The largest reported reductions were noted after excisional procedures (91.1%), lymphatic reconstruction (54.9%), and tissue transfer procedures (47.6%). Procedure complications were rarely reported. The authors concluded that most of these reports are based on small numbers of patients, use non-standardized or inconsistent measurement techniques, and lack long-term follow-up. In addition, although these surgical techniques have shown promising results, nearly all note that the procedures do not obviate the need for continued use of conventional therapies, including compression, for long-term maintenance.

Sudduth et al. (2020) reported on a cohort of patients from their lymphedema program database who were referred to a lymphedema program. Seven hundred patients were referred with a diagnosis of "lymphedema"; 71% were female and 38% were children. Lymphedema was confirmed in 71% of the cohort: primary (62%), secondary (22%), and obesity-induced (16%). Twenty-nine percent of the individuals labeled with "lymphedema" had another condition. One-half of the patients had not received treatment, and 36% resided outside of the local referral area. One-third of the subjects with lymphedema had an infection and 30% had >1 visit to the center. Patients with confirmed lymphedema were managed with compression stockings (100%), pneumatic compression (69%), and/or an excisional procedure (6%). The authors concluded that patients with suspected lymphedema need to be referred to specialists focused on lymphedema. Since the condition is chronic, individuals need to return for longitudinal follow-up. Lymphoscintigraphy is the most accurate test to confirm or rule-out the disease. Maintaining a normal body mass index and avoiding infections are important variables influencing the severity of the disease. Most patients are able to be managed conservatively with compression strategies and, if not, liposuction is an effective procedure to reduce the size of the extremity and potentially improve lymphatic function.

Gallagher et al. (2019) conducted a review of surgical treatment options for lymphedema reduction. Water displacement remains the gold standard for measuring limb volume and classification of lymphedema; however, lymphoscintigraphy and ICG lymphography are two novel imaging techniques that are now utilized to characterize lymphedema and guide management. Complete decongestive therapy (CDT) remains the mainstay of treatment. Vascularized lymph node transfer (VLNT) and lymphovenous bypass have shown promising results, particularly in advanced lymphedema stages. Combination therapy, incorporating both surgical and non-surgical approaches to lymphedema, yields best patient outcomes. The authors concluded that “Further research must be conducted in order to establish the absolute best practices in lymphedema diagnosis and treatment. Standardization in lymphedema staging, key outcome indicators, and quantitative data will be critical to future research. This will enable high-quality, randomized control trials that are needed to clarify indications and refine techniques for optimal patient care”.

Professional Societies/Organizations

National Cancer Institute (NCI): The NCI Health Professional Version [Physician Data Query (PDQ®)] on lymphedema states that “Surgery is rarely performed on patients who have cancer-related lymphedema. The primary surgical method for treating lymphedema consists of removing the subcutaneous fat and fibrous tissue with or without creation of a dermal flap within the muscle to encourage superficial-to-deep lymphatic anastomoses. These methods have not been evaluated in prospective trials, with adequate results for only 30% of patients in one retrospective review. In addition, many patients face complications such as skin necrosis, infection, and sensory abnormalities. The oncology patient is usually not a candidate for these procedures. Other surgical options include the following: Microsurgical lymphaticovenous anastomoses in which the lymph is drained into the venous circulation or the lymphatic collectors above the area of lymphatic obstruction; liposuction; superficial lymphangiectomy; fasciotomy” (NCI, 2015; 2019).

The NCCN Guideline on Survivorship (Version 2.2020) has a section on lymphedema. The guideline does not specifically mention surgical treatments for lymphedema.

National Lymphedema Network (NLN): The NLN published a position paper on the diagnosis and treatment of lymphedema in 2011. Per the NLN website, this position paper has been retracted and is currently in the process of being updated.

American Society of Plastic Surgeons (ASPS): The ASPS does not have a guideline or position statement with evidence-based recommendations for the treatment of lymphedema. They do address surgical options for lymphedema on the ASPS website.

Use Outside of the US
National Institute for Health and Care Excellence (NICE): NICE issued clinical guidance addressing the use of liposuction for chronic lymphedema in 2017 (NICE, 2017). The guidance reviewed the evidence and concluded that current evidence on the safety and efficacy of liposuction for chronic lymphedema is adequate to support the use of this procedure provided that standard arrangements are in place for clinical governance, consent and audit. Patient selection should only be done by a multidisciplinary team as part of a lymphedema service.

International Society of Lymphology (ISL): The updated 2020 consensus document regarding the diagnosis and treatment of peripheral lymphedema discusses operative treatments. The document states that “Operations designed to alleviate peripheral lymphedema by enhancing lymph return have gained increasing acceptance and application worldwide but in advanced stages usually require long-term combined physiotherapy and/or other compression after the procedure to maintain edema reduction and ensure vascular/shunt patency. In some specialized centers, operative treatment within specific guidelines is now a preferred approach depending on the treatment team’s training and the availability of various treatments. As is the case with any category of surgery, differences in surgical treatment will exist among different centers and patients are strictly selected.”

Lipedema
Lipedema is a rare disorder of adipose tissue that primarily affects females and is often misdiagnosed as obesity or lymphedema. There are numerous synonyms to refer to this condition (e.g. adipositas dolorosa, lipomatosis dolorosa, painful lipohypertrophy). The disorder is well-known in Europe but is largely unrecognized and underdiagnosed in the United States. Lipedema is a distinct entity that must be differentiated from obesity and lymphedema, although it may progress to involve the venous and lymphatic systems, which increases the difficulty of its diagnosis. In contrast to primary lymphedema, the lymphatic system remains unimpaired in the initial stages of lipedema and can keep up with the increased amount of interstitial fluid. In the majority of the cases, lipedema is located in lower limbs with the feet unaffected. There is usually minimal pitting edema. The typical presentation is of a woman with bilateral “stovepipe” enlargement of the legs and without involvement of the feet with a sharp demarcation between normal and abnormal tissue at the ankle, referred to as the “cuff sign.” This is often combined with a symmetrical involvement of arms, particularly the upper arms, with sparing of hands. Lipedema may be isolated to the arms without involvement of the legs, but this is extremely rare. The pathogenesis is unknown and no curative treatment is available. Patients may complain of tenderness and pain and sustain easy bruising. Elevating the limbs has no effect on the involved limbs. Advanced lipedema may progress into lymphedema. When lipedema remains untreated, increased lymphatic load continually exceeds lymphatic transport capacity resulting in the decompensation of the lymphatic system therefore, uni-, or much more typically, bilateral lymphedema can develop. The pressure of the fat tissue itself causes obstruction of the lymphatic vessels resulting in secondary lymphedema. Additionally, the deposition of protein-rich edema causes fibrosis of the tissue, further impairing lymphatic drainage. The combination of lymphatic insufficiency and lipedema is called lipolymphedema or lympho-lipedema. Concomitant severe venous insufficiency is rare; however, varicosity is often seen among lipedematous patients. Diagnosis of lipedema is generally made on the basis of clinical features (See Appendix A). Usually, the medical history and clinical examination are enough to
suspect the diagnosis. The most common comorbidities associated with lipedema include: hypertension, obesity (BMI ≥ 35), hypothyreosis, atopic diseases, osteoporosis, lymphedema, varicose veins of leg, depression and anxiety (Sandhofer, et al., 2019; Shavit, et al., 2018; Mehrara, 2019; Canning, et al., 2018; Dadras, et al., 2017; Forner-Cordero, et al., 2012; Stutz, et al., 2009).

There are currently four reported stages of lipedema: Stage 1 involves an even skin surface with an enlarged hypodermis; Stage 2 involves an uneven skin pattern with the development of a nodular or mass-like appearance of subcutaneous fat, lipomas, and/or angiolipomas; Stage 3 involves large growths of nodular fat causing severe contour deformity of the thighs and around the knee; and Stage 4 involves the presence of lipolymphedema (Buck, et al., 2016).

The standard conservative therapy for lipedema significantly differs from that of lymphedema. Management of lipedema is complex and distinct from lymphedema. The proposed main conservative treatment is complete or complex decongestive therapy (CDT). (Please refer to Medical Coverage Policy Complex Lymphedema Therapy [Complete Decongestive Therapy]). CDT combines several approaches including manual lymph drainage (a massage technique), compression therapy, and physical mobilization. Manual lymphatic drainage, compression stockings, intermittent pneumatic compression, skin care and exercise are often used to control pain and symptoms. Diet is also used to prevent or treat obesity associated with lipedema. It is suggested that lipedema patients avoid weight gain. Obesity and “yo-yo” dieting have been shown to exacerbate lipedema. Even with conservative and supportive treatments, the disease may progress and further treatment may be necessary. For a defined subset of lipedema patients who are unresponsive to conservative treatment, a surgical option may be liposuction using specialized techniques (e.g., water jet-assisted liposuction). Often, multiple sessions of liposuction are necessary to adequately treat the extremities circumferentially and along their entire length. Liposuction can only reduce the amount of fatty tissue, but not completely remove it. Many patients often require ongoing conservative treatment postoperatively to maintain results. Additionally, the avoidance of postoperative weight gain is essential in order to maintain the results of surgery (Sandhofer, et al., 2019; National Institute of Health [NIH], 2019; Wollina, 2019; Dadras, et al., 2017; Warren and Kappos, 2016; Buck and Herbst, 2016).

Literature Review: Witte et al. (2020) conducted an observational study to assess the effectiveness of water-jet-assisted liposuction for the treatment of lipedema. Patients (n=63) who were planned to receive liposuction as a treatment for lipedema were included in the study. There was no comparator. The following outcomes were measured by visual analog scale (VAS) preoperatively and on follow up at a median of 21.5 months: pain, sensitivity to touch, bruising, feeling of tension, feeling of “heavy” legs, swelling, itching, running impairment, occupational impairment, general impairment, esthetic impairment. Additional outcomes evaluated included the reduction of manual lymphatic drainage and use of compression garments. Results of the VAS scores improved from baseline in all areas: pain reduced from 6.5 to 1.4; sensitivity to touch from 7 to 1.5; bruising from 7 to 2; feeling of tension 8 to 1; feeling of “heavy” legs 8 to 2; swelling from 7 to 2; itching from 4 to 1; running impairment 5 to 1; occupational impairment 5 to 1; general impairment from 8 to 1; and esthetic impairment from 9 to 3. The percentage of patients utilizing manual lymphatic drainage was reduced to 39.7% from 88.9% preoperatively. Compression garment usage dropped to 31.7% from 95.2%. No serious complications were noted. It was observed that post-op swelling was present for a mean of 4.3 weeks. Patients were absent from work a mean of 2.7 weeks. Limitations of the study include a lack of comparator, small patient population, and short term follow up. In this small study, water-jet-assisted liposuction achieved favorable results with no serious complications.

Ghods et al. (2020) conducted a retrospective review on the disease progression of comorbidities in patients (n=106) who underwent liposuction for the treatment of lipedema. Patients were included if they had a validated diagnosis of lipedema, preoperative conservative therapy for six months, and underwent either power-assisted (PAL) or water-jet assisted liposuction. Primary outcomes measured included: changes in BMI reduction, normalization of menstrual cycle, hypothyroid treatment, improvement in migraine intensity or frequency, improvement in lipedema associated dermatoses, reduction in pain perception and sick leave due to lipedema-related symptoms, and improved sex life. Median follow was 20 months with a range of six to 115 months. Postoperative results included a median BMI reduction of 2.7 kg/m² (8.7%); normalization of menstrual cycle in 53%; no change in hypothyroid treatment; improvement in migraine intensity or frequency in 67%, 12.5% reported no migraines at all after surgery; 90% reported improvement in lipedema associated dermatoses; reduction in pain perception (p<0.0001); 58% of patients reported reduced sick leave due to lipedema-related
symptoms and improved sex life ($p<0.0001$). Mild adverse events included four superficial wound infections, two seromas, and one patient experienced mild postoperative bleeding. Study limitations include the retrospective study design, lack of comparator, and short-term follow-up. This retrospective study illustrates that liposuction as treatment for lipedema was able to improve lipedema-associated comorbidities and symptoms.

In a case series study, Wollina, et al. (2019) analyzed 111 patients with lipedema not responding to complex decongestive Therapy (CDT). The patients underwent a total of 334 liposuctions. Comorbidities were recorded. The study included patients with a diagnosis of lipedema. All were females aged 20–81 years of age (median ± standard deviation: 44 ± 16.8 years). They had been treated by CDT for at least six months without improvement or experienced deterioration of pain sensations and/or leg volume. The study included seven patients with lipedema Stage I, 50 patients with Stage II, and 48 patients with Stage III. All patients had an involvement of the legs including 108 patients with a dominance of the upper legs and two with a more pronounced involvement of the lower legs. Twenty-seven patients also had an involvement of the arms (24%). The delay of diagnosis was between 1 and 21 years. Eighty percent of patients had at least one comorbidity (e.g., obesity, lymphedema, and diabetes). The intervention was micro-cannular liposuction in tumescent anesthesia (TA) with the classical mechanical liposuction, some patients had a 980 nm-diode laser-assisted liposuction. The primary outcomes were reduction of limb circumferences, pain (on a 10-point visual analogue scale [VAS]), bruising, improvement of mobility and adverse events. The median follow-up was 2.0 ± 2.1 years. A follow-up between five and seven years was available in 18 patients. The median total amount of lipoaspirate was 4,700 ml, with a range of 950–14,250 ml. The median reduction of limb circumference was 6 cm. The median pain level before treatment was 7.8 and 2.2 at the end of the treatment. An improvement of mobility could be achieved in all patients and bruising was reduced. None of these patients had a relapse of lipedema. Serious adverse events were observed in 1.2% of procedures, the infection rate was 0% and the bleeding rate was 0.3%. In 4.5% of patients with most advanced disease, other surgical procedures had been performed after completion of liposuction, such as thigh or arm lift, laser lipolysis, or debulking surgery to obtain best results. Limitations of this study include the lack of a comparator group, small patient population and loss of patients to long-term follow-up.

In a case series study, Schmeller et al. (2006) reported the efficacy and safety of surgery (liposuction) concerning appearance and associated complaints. Twenty-eight patients, who had undergone conservative therapy over a period of years, were treated by liposuction under tumescent local anesthesia with vibrating microcannulas. Twenty-one could be reevaluated after an average of 12.2 (1–26) months. From 28 patients, 15 were operated on once, eight twice, two three times, and three four times. The average amount of fat removed per session was 3017 mL, with a range of 1060 to 5500 mL depending on the size and number of operated areas. The authors reported that all patients showed improvement, with normalization of body proportions. Spontaneous pain, sensitivity to pressure, and bruising either disappeared completely or improved. Other than minor swelling for a few days, no complications could be observed following surgery. All patients reported an increase in their quality of life. Physical therapy had to be continued to a much lower degree. Limitations of the study include the lack of a comparator group, small sample size and short-term follow-up.

Forner-Cordero 2012 reported in a systematic review of the literature that there is a lack of knowledge and little evidence about lipedema, especially among obesity experts. Treatment protocols are stated to be comprised of conservative (decongestive lymphatic therapy) and surgical (liposuction) approaches. The authors concluded that current knowledge about lipedema as a hidden epidemic is scarce, but the scientific interest is increasing. More studies are required to know the real prevalence and to reach an earlier diagnosis of this disorder. Diagnosis and treatment should be made as early as possible to prevent complications associated with increased functional and cosmetic morbidity.

In a review of surgical treatments for lipedema, Buso et al. (2019) reported that although some studies have reported better outcomes in the early stages of lipedema compared with advanced ones, consistent criteria to identify the ideal timing or patient characteristics for liposuction are lacking. Tumescent local anesthesia (TLA) requires specialized skills and needs to be performed in specialized centers. In advanced lipedema stages, multiple sessions are frequently necessary to remove larger amounts of adipose tissue and prevent recurrent fat deposition. Despite several promising short-term results, only a few studies have evaluated the long-term efficacy of TLA for lipedema treatment. The author states that additional research with longer-term outcomes will help support the role of liposuction in the management of lipedema.
Professional Societies/Organizations

No evidence-based clinical practice guidelines were located for lipedema.

Use Outside of the US

The Austrian Academy of Cosmetic Surgery and Aesthetic Medicine and the International Society for Dermatologic Surgery held the First International Consensus Conference on lipedema with the purpose of reviewing current European guidelines and the literature regarding the long-term benefits that have been reported to occur after lymph-sparing liposuction for lipedema using tumescent local anesthesia. Lipedema is well-known in Europe but is largely unrecognized and underdiagnosed in the United States. The authors state that multiple studies from Germany have reported long-term benefits for as long as eight years after liposuction for lipedema using tumescent local anesthesia. The international experts concluded that lymph-sparing liposuction using tumescent local anesthesia is currently the only effective treatment for lipedema (Sandhofer, et al., 2020).

In June 2019, the Canadian Agency for Drug and Technologies in Health (CADTH) published a Rapid Response Report: Summary with Critical Appraisal on Liposuction for the Treatment of Lipedema-A Review of Clinical Effectiveness and Guidelines. The key research questions were: what is the clinical effectiveness of liposuction for the treatment of lipedema and what are the evidence-based guidelines regarding the use of liposuction for the treatment of lipedema? The authors’ conclusions state that “information about the clinical effectiveness of liposuction for the treatment of lipedema was sourced from five uncontrolled before-and-after studies (Dadras, et al., 2017; Wollina, et al., 2019; Schmeller, et al., 2012, Rapprich, et al., 2011; Baumgartner, et al., 2016). Data from the studies indicated that in patients with lipedema, treatment with liposuction resulted in a significant improvement of pain, sensitivity to pressure, edema, bruising, feeling of tension, and quality of life. The patients also experienced significant reductions in size extremities and restriction of movement, and the need for conservative therapy for lipedema. The benefits of liposuction remained up to 88 months follow-up assessments. Liposuction was generally well tolerated; most adverse events occurred in <5% of patients. However, the quality of the evidence was limited, with sources of uncertainty such as systematic biases due to lack of randomization, and the use of instruments that have not been validated for the collection of data and assessment in lipedema-related complaints. Studies to validate tools to assess lipedema-related outcomes and define a minimally clinically important difference for the condition may also be necessary to put the benefit of liposuction for the treatment of lipedema in a clinical perspective”.

Revised guidelines on lipedema were developed under the auspices of and funded by the German Society of Phlebology (DGP) (Reich-Schupke, et al., 2017). The recommendations are based on a systematic literature search and the consensus of eight medical societies and working groups. The guidelines stated that the diagnosis of lipedema is established on the basis of medical history and clinical findings and is characterized by localized, symmetrical increase in subcutaneous adipose tissue in arms and legs in marked disproportion to the trunk. In addition edema, easy bruising, and increased tenderness may be seen. Further diagnostic tests are typically reserved for special cases that require additional workup. Lipedema is a chronic, progressive disorder with individual variability and unpredictability of its clinical course. Treatment consists of four therapeutic mainstays that may be combined as necessary to address current clinical symptoms. These four treatments include: complex physical therapy (manual lymphatic drainage, compression therapy, exercise therapy, and skin care), liposuction and plastic surgery, diet, and physical activity, as well as psychotherapy if necessary. According to the Society, surgical procedures may be indicated if, despite thorough conservative treatment, symptoms persist, or if there is progression of clinical findings and/or symptoms.

Halk and Damastra (2017), in a systematic review of the literature to June 2013, reported on Dutch guidelines for lipedema. In 2011, the Dutch Society of Dermatology and Venereology organized a task force to create guidelines on lipedema, using the International Classification of Functioning, Disability and Health of the World Health Organization. Clinical questions on significant issues in lipedema care were proposed, involving making the diagnosis of lipedema; clinimetric measurements for early detection and adequate follow-up; and treatment. The authors concluded that there is little consistent information about the diagnosis or therapy of lipedema in the literature and indicate lipedema is frequently misdiagnosed as only an aesthetic problem and therefore under- or mis-treated. Treatment is divided into conservative and surgical treatment. The guideline recommendations state “To ensure early detection and an individually outlined follow-up, the committee advises the use of a minimum
data set of (repeated) measurements of waist circumference, circumference of involved limbs, body mass index and scoring of the level of daily practice and psychosocial distress. Promotion of a healthy lifestyle with individually adjusted weight control measures, graded activity training programs, edema reduction, and other supportive measures are pillars of conservative therapy. Tumescent liposuction is the treatment of choice for patients with a suitable health profile and/or inadequate response to conservative and supportive measures”. The authors reported that consistent criteria to determine the ideal time or patient characteristics for liposuction are not available. The strength of the recommendations in this clinical guideline and the links to supporting evidence were not provided.

Appendix A

Differential diagnosis of lymphedema and lipedema (Shavit, et al., 2018)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Lipedema</th>
<th>Lymphedema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiology</td>
<td>Genetic, primary</td>
<td>Defects in lymph vessels, primary or secondary</td>
</tr>
<tr>
<td>Disproportion</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Age of onset</td>
<td>Puberty</td>
<td>Any age</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>Both genders</td>
</tr>
<tr>
<td>Skin consistency</td>
<td>Firm</td>
<td>Soft</td>
</tr>
<tr>
<td>Skin color</td>
<td>Normal, sometimes ecchymosis</td>
<td>Brown, warty, sclerotic</td>
</tr>
<tr>
<td>Extent of involvement</td>
<td>Bilateral, mainly legs</td>
<td>Unilateral or bilateral most commonly on legs and arms</td>
</tr>
<tr>
<td>Symmetry</td>
<td>Symmetric</td>
<td>May be asymmetric</td>
</tr>
<tr>
<td>Clinical cues</td>
<td>“Cuff sign” ankle pad fatty retromalleolar sulcus or lack of Achilles tendon definition</td>
<td>Verruca papillomatosis, pebbly stone skin, positive stemmer sign*</td>
</tr>
<tr>
<td>Involvement of feet</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Response to compression therapy</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Common associations</td>
<td>Anxiety, depression, hypermobility</td>
<td>Venous disease, recurrent cellulitis</td>
</tr>
<tr>
<td>Easy bruising</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

* A positive Stemmer sign is the inability to pinch the fold of skin at the base of the second toe or finger, indicating the presence of lymphedema

Medicare Coverage Determinations

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Policy Name/Number</th>
<th>Revision Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCD</td>
<td>No policy found</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>No policy found</td>
<td></td>
</tr>
</tbody>
</table>

Note: Please review the current Medicare Policy for the most up-to-date information.

Coding/Billing Information

Note: 1) This list of codes may not be all-inclusive.
2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Considered Experimental/Investigational/Unproven for the surgical treatment of lymphedema:
<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15832</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); thigh</td>
</tr>
<tr>
<td>15833</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); leg</td>
</tr>
<tr>
<td>15836</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); arm</td>
</tr>
<tr>
<td>15839</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); arm</td>
</tr>
<tr>
<td>15876</td>
<td>Suction assisted lipectomy; head and neck</td>
</tr>
<tr>
<td>15877</td>
<td>Suction assisted lipectomy; trunk</td>
</tr>
<tr>
<td>15878</td>
<td>Suction assisted lipectomy; upper extremity</td>
</tr>
<tr>
<td>15879</td>
<td>Suction assisted lipectomy; lower extremity</td>
</tr>
</tbody>
</table>

Considered Experimental/Investigational/Unproven when used to report any surgical treatment indicated in this coverage policy as experimental, investigational or unproven:

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38589</td>
<td>Unlisted laparoscopy procedure, lymphatic system</td>
</tr>
<tr>
<td>38999</td>
<td>Unlisted procedure, hemic or lymphatic system</td>
</tr>
</tbody>
</table>

Considered Medically Necessary when used to report lipectomy or liposuction for the treatment of lipedema when criteria in the applicable policy statements listed above are met:

<table>
<thead>
<tr>
<th>CPT®* Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15832</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); thigh</td>
</tr>
<tr>
<td>15833</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); leg</td>
</tr>
<tr>
<td>15836</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); arm</td>
</tr>
<tr>
<td>15837</td>
<td>Excision, excessive skin and subcutaneous tissue (includes lipectomy); forearm or hand</td>
</tr>
<tr>
<td>15878</td>
<td>Suction assisted lipectomy; upper extremity</td>
</tr>
<tr>
<td>15879</td>
<td>Suction assisted lipectomy; lower extremity</td>
</tr>
</tbody>
</table>

References

