Overview

This Coverage Policy addresses in-home ventilators HCPCS E0465-E0467 only.

Coverage Policy

Coverage for Durable Medical Equipment (DME), including in-home ventilators varies across plans. Please refer to the customer’s benefit plan document for coverage details.

INVASIVE INTERFACE (HCPCS E0465)

A home ventilator with invasive interface (e.g., tracheostomy tube) is considered medically necessary if an individual has ANY of the following conditions:

- a neuromuscular disease
- a thoracic restrictive disease
- chronic respiratory failure consequent to chronic obstructive pulmonary disease
- congenital central hypoventilation syndrome
- chronic lung disease of infancy (e.g., bronchopulmonary dysplasia)
• obesity hypoventilation syndrome
• restrictive disorder of chest wall

NON-INVASIVE INTERFACE (HCPCS E0466)
A home ventilator with non-invasive interface (e.g., facemask) is considered medically necessary when **ALL** of the following criteria are met:

- Individual has **ONE** of the following AND lack of ventilator support would result in a life-threatening condition:
 - a neuromuscular disease
 - a thoracic restrictive disease
 - chronic respiratory failure consequent to chronic obstructive pulmonary disease
 - congenital central hypoventilation syndrome
 - chronic lung disease of infancy (e.g., bronchopulmonary dysplasia)
 - obesity hypoventilation syndrome
 - restrictive disorder of chest wall
- Individual has demonstrated failure of bilevel positive airway pressure (BPAP) to improve hypercapnia and/or oxygen saturation level
- Individual does not require ventilation continuously (24 hours/day)

MULTI-FUNCTION (HCPCS E0467)
The Ventilation, Oxygen, Cough, Suction, Nebulization (VOCSN) multifunction ventilator (HCPCS E0467) is considered medically necessary for an individual who meets the medical necessity coverage criteria for a home ventilator AND has a requirement for **MORE** than one of the four additional functions (oxygen concentrator, cough stimulator, suction pump and nebulizer).

ADDITIONAL OR DUPLICATE DEVICES
An additional or duplicate home ventilator device (HCPCS E0465-E0466) is considered medically necessary:

- for an individual who requires mechanical ventilation during mobility (e.g., for use in wheelchair) as prescribed in their plan of care
- as a secondary ventilator (serves a different purpose or is a different type of device than the individual’s primary ventilator)

An additional or duplicate home ventilator device (HCPCS E0465-E0467) is considered **NOT** medically necessary as a back-up device (similar device as the individual’s primary ventilator, for multiple residences or to have in case of possible malfunction).

NOT MEDICALLY NECESSARY
A home ventilator device (HCPCS E0465-E0467) is considered **NOT** medically necessary for any of the following:

- a non-life-threatening condition
- when the sole purpose of the home ventilator is to function as a respiratory assistance device (RAD) including continuous positive airway pressure (CPAP), auto-titrating PAP (APAP), bilevel positive airway pressure (BPAP, BiPAP), adaptive servo-ventilation (ASV), average volume assured pressure support (AVAPS), or intelligent volume assured pressure support (iVAPS)
- treatment for obstructive sleep apnea

General Background
A ventilator, also known as a respirator, can help a person breathe when they are unable to breathe sufficiently on their own. A mechanical ventilator can take over the act of breathing completely or make breathing easier by assisting weakened respiratory muscles. Mechanical ventilation is indicated in respiratory failure, which is defined as insufficient oxygenation, insufficient alveolar ventilation, or both. The desired effect of mechanical
ventilation is to maintain appropriate levels of Po2 and Pco2 in arterial blood while unloading the ventilatory muscles.

Positive Pressure Ventilation
The majority of all mechanical ventilatory support is provided by positive pressure ventilation. Positive pressure ventilators developed as a more effective breathing option to the larger, bulkier negative pressure devices (e.g., iron lung). Since the 1980s, computer technology has enabled manufacturers to produce even smaller, lightweight ventilators that are easier to transport and operate, and are better suited for people living at home. Home ventilators may be used via:

- an invasive interface (i.e., tracheostomy) or
- a noninvasive interface (i.e., nose or mouth mask, chest shell).

After careful evaluation and pulmonary function tests to assess breathing and lung function and capacity, the physician recommends a type of ventilator and appropriate interfaces. In the USA, physicians work with respiratory therapists in home health care companies that provide the equipment, supplies, and education, training and monitoring. Individuals who need to use ventilation only at night have different equipment requirements than those who need to use a ventilator around the clock. Sometimes an individual may not be comfortable with a specific ventilator or interface and may need to change them in order to find the most comfortable and effective system. Some ventilator users alternate modes and interfaces during the day and night. There are some clinical scenarios that warrant both a primary ventilator and a secondary ventilator. An example is if an individual requires one type of ventilator (e.g., a negative pressure ventilator with a chest shell) during the day and needs a different type of ventilator (e.g., positive pressure ventilator with a face mask) during the night.

Multi-mode ventilators can provide many modes of ventilation, such as pressure support, pressure control, volume control, assist/control, synchronized intermittent mandatory ventilation (SIMV), bilevel positive pressure (BiPAP, BPAP) or continuous positive airway pressure (CPAP). Examples include LTV® series (CareFusion BD), iVent 201® (GE Healthcare), Trilogy 100, 200, 202 (Philips Respironics Inc), and VOCSN Unified Respiratory System (Ventec Life Systems, Inc.).

Food and Drug Administration (FDA)
Numerous positive and negative pressure ventilators are FDA-approved. One of the more recent approvals was for the Ventilation, Oxygen, Cough, Suction, Nebulization (VOCSN) Unified Respiratory System (Ventec Life Systems, Inc., Bothell, Washington USA) which received 510(k) approval on April 7, 2017. Also known as the Ventec One-Circuit™, VOCSN is a multifunction ventilator that can provide five therapies or a mix of therapies from a single device. Therapies provided by VOCSN include: critical care ventilation; 6 L/min oxygen concentrator; touch button cough; hospital grade suction and high performance nebulizer. The VOCSN is intended to provide continuous or intermittent positive pressure ventilator support for the care of individuals who require mechanical ventilation. It may be used in invasive and noninvasive applications. The VOCSN is intended for pediatric through adult patients weighing at least 5 kg. It is intended for use in home, hospital, institutional and transport settings, including portable applications. The integral oxygen concentrator is intended for the administration of supplemental oxygen. The integral suction pump is intended for airway fluid removal and oral/pharyngeal hygiene. The integral cough assist option is intended for patients who are additionally unable to cough or clear secretions effectively.

Literature Review
The Agency for Healthcare Research and Quality (AHRQ) Technology Assessment on Noninvasive Positive Pressure Ventilation in the Home (Final report 2/04/2020) evaluated home noninvasive positive pressure ventilation (NIPPV) in adults with chronic respiratory failure in terms of initiation, continuation, effectiveness, adverse events, equipment parameters and required respiratory services. Devices evaluated were home mechanical ventilators (HMV), bi-level positive airway pressure (BPAP) devices, and continuous positive airway pressure (CPAP) devices.

Of the included 68 studies, 14 evaluated home mechanical ventilator (HMV). Key messages include:

- In patients with COPD, home NIPPV as delivered by a BPAP device (compared to no device) was associated with lower mortality, intubations, hospital admissions, but no change in quality of life (low to
moderate strength of the body of evidence [SOE]). NIPPV as delivered by a HMV device (compared individually with BPAP, CPAP, or no device) was associated with fewer hospital admissions (low SOE). In patients with thoracic restrictive diseases, HMV (compared to no device) was associated with lower mortality (low SOE). In patients with neuromuscular diseases, home BPAP (compared to no device) was associated with lower mortality and better quality of life (low SOE). In patients with obesity hypoventilation syndrome, HMV/BPAP mix (compared to no device) was associated with lower mortality (low SOE). BPAP (compared to no device) was associated with improved sleep quality.

- Current evidence is insufficient to assess the comparative effectiveness of many NIPPV device capabilities on patient outcomes; particularly comparing HMV to BPAP. Future studies should address which device capabilities are associated with improved patient outcomes.
- Criteria to initiate home NIPPV and home respiratory services were summarized in this report but varied and were not validated in comparative studies.
- Incidence of non-serious adverse events such as facial rash, dry eyes, mucosal dryness, and mask discomfort across devices was approximately 0.3 events over a median duration of device used of 6 months. The most commonly reported serious adverse event was acute respiratory failure. Based on direct comparisons, we found no statistically significant differences in number of treatment withdrawals or adverse events when comparing different devices or when comparing device use with no device use.

Professional Societies/Organizations

American Association for Respiratory Care (AARC): The AARC Clinical Practice Guideline Long-term Invasive Mechanical Ventilation in the Home (2007) refers to patients ventilated by positive pressure via a tracheostomy tube in the home. Patients requiring invasive long-term ventilator support have demonstrated:

- an inability to be completely weaned from invasive ventilatory support, or
- a progression of disease etiology that requires increasing ventilatory support.

Conditions that met these criteria may include but are not limited to ventilatory muscle disorders, alveolar hypoventilation syndrome, primary respiratory disorders, obstructive lung diseases, restrictive lung diseases, and cardiac disorders, including congenital anomalies.

Contraindications to invasive long term mechanical ventilation in the home include:

- the presence of a physiologically unstable medical condition requiring higher level of care or resources than available in the home
- patient’s choice not to receive home mechanical ventilation
- lack of an appropriate discharge plan
- unsafe physical environment as determined by the patient’s discharge planning team
- inadequate resources for care in the home

American Thoracic Society (ATS) Long-Term Noninvasive Ventilation in Chronic Stable Hypercapnic Chronic Obstructive Pulmonary Disease: The ATS Clinical Practice Guideline Long-Term Noninvasive Ventilation in Chronic Stable Hypercapnic Chronic Obstructive Pulmonary Disease (Macrea, et al., 2020) purpose is to summarize the available evidence and provide actionable recommendations addressing:

- patients with COPD, especially potential subgroups who might benefit from NIV therapy
- the ideal timing and location (e.g., hospital or sleep laboratory vs. home) for NIV initiation
- the identification of optimal modes and settings for chronic NIV therapy.

American Thoracic Society (ATS) Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome: The ATS Clinical Practice Guideline Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome (Fan, et al., 2016) is an evidence-based clinical practice guideline on the use of ventilatory strategies and associated cointerventions in adult patients with acute respiratory distress syndrome (ARDS), providing treatment recommendations on the basis of these interventions. It does NOT specifically address home setting or portable ventilation.
1. The recommendations for the following interventions for the treatment of ARDS are strong:
a. Mechanical ventilation using lower tidal volumes (4–8 ml/kg predicted body weight) and lower
inspiratory pressures (plateau pressure, 30 cm H2O) (moderate confidence in effect estimates)
b. Prone positioning for more than 12 h/d in severe ARDS (moderate confidence in effect estimates)

2. The recommendation against the following intervention for the treatment of ARDS is strong:
a. Routine use of high-frequency oscillatory ventilation in patients with moderate or severe ARDS (high
confidence in effect estimates)

3. The recommendation for the following interventions for the treatment of ARDS is conditional:
a. Higher positive end-expiratory pressure in patients with moderate or severe ARDS (moderate
confidence in effect estimates)
b. Recruitment maneuvers in patients with moderate or severe ARDS (low confidence in effect
estimates)

4. Additional evidence is necessary to make a definitive recommendation for or against the use of
extracorporeal membrane oxygenation in patients with severe ARDS.

American Thoracic Society (ATS) Pediatric Chronic Home Invasive Ventilation: The ATS Clinical Practice
Guideline Pediatric Chronic Home Invasive Ventilation (Sterni, et al., 2016) is an evidence-based clinical practice
guideline for health care professionals for the safe hospital discharge and home/community management of
children requiring chronic invasive ventilation. The recommendations presented are based on the current
evidence and expert opinion and will require an update as new evidence and/or technologies become available.
Recommendations regarding home equipment include:

- The ATS suggest the following pieces of equipment for use in the home when caring for a patient on
 home mechanical ventilation: the ventilator, a back-up ventilator, batteries, a self-inflating bag and mask,
suctioning equipment (portable), heated humidifier, supplemental oxygen for emergency use, nebulizer,
and a pulse oximeter (nonrecording) (Strength of Recommendation: Conditional; Quality of Evidence:
Very Low).
- The ATS suggest that a mechanical insufflation–exsufflation (MI-E) device be used to help maintain
 airway patency in patients requiring home mechanical ventilation with ineffective cough, including, but
not limited to, those with neuromuscular disease with poor respiratory muscle strength (Strength of
Recommendation: Conditional; Quality of Evidence: Very Low).
- For children requiring chronic home invasive ventilation, the ATS suggest monitoring, especially when
 the child is asleep or unobserved, with a pulse oximeter rather than use of a cardiorespiratory monitor or
sole use of the ventilator alarms (Strength of Recommendation: Conditional; Quality of Evidence: Very
Low).
- For children requiring chronic home invasive ventilation, The ATS recommend regular maintenance of
 home ventilators and all associated equipment as outlined by the manufacturer.

American Thoracic Society (ATS) Management of COPD Exacerbations: The ERS/ATS Clinical Practice
Guideline on the Management of COPD Exacerbations (Wedzicha 2017) notes the following:

- Should NIV be used in patients who are hospitalized with a COPD exacerbation associated with acute or
 acute-on-chronic respiratory failure? For hospitalized patients with acute or acute-on-chronic
 hypercapnic respiratory failure due to a COPD exacerbation, we recommend the use of NIV (strong
 recommendation, low quality of evidence).
- Should a home-based management programme (hospital-at-home) be implemented in patients with
 COPD exacerbations? For patients with a COPD exacerbation who present to the emergency
department or hospital, we suggest a home-based management programme (hospital-at-home;
conditional recommendation, moderate quality of evidence).

American Thoracic Society (ATS) and European Respiratory Society (ERS) Clinical Practice Guideline
Noninvasive Ventilation for Acute Respiratory Failure: The ATS/ERS guideline does NOT specifically
address home setting or portable ventilation (Rochwerg 2017). It makes recommendations regarding the current use of NIV for various forms of respiratory failure encountered in acute care settings.

American Academy of Neurology (AAN) Practice Parameter Update on the care of the patient with Amyotrophic Lateral Sclerosis: The AAN Care of the Patient with Amyotrophic Lateral Sclerosis: Drug, Nutritional, and Respiratory Therapies (Miller, et al., 2009; Reaffirmed on January 11, 2020) provides these:

Recommendations under Respiratory Management
- Nocturnal oximetry may be considered to detect hypoventilation (regardless of the forced vital capacity, FVC) (Level C*).
- Supine FVC and maximal inspiratory pressure (MIP) may be considered useful in routine respiratory monitoring, in addition to the erect FVC (Level C).
- Sniff nasal pressure (SNP) may be considered to detect hypercapnia and nocturnal hypoxemia (Level C).
- Noninvasive ventilation (NIV) may be considered to enhance quality of life (QOL) in patients with ALS who have respiratory insufficiency (Level C).
- Tracheostomy invasive ventilation (TIV) may be considered to preserve QOL in patients with ALS who want long-term ventilator support (Level C).
- NIV may be considered at the earliest sign of nocturnal hypoventilation or respiratory insufficiency in order to improve compliance with NIV in patients with ALS (Level C).
- Mechanical insufflation/exsufflation (MIE) may be considered to clear secretions in patients with ALS who have reduced peak cough flow, particularly during an acute chest infection (Level C).
- There are insufficient data to support or refute high frequency chest wall oscillation (HFCWO) for clearing airway secretions in patients with ALS (Level U).

Recommendations for Future Research: Respiratory management:
1. Evaluate SNP as a criterion for NIV initiation.
2. Evaluate the impact of early NIV initiation on survival and quality of life.
3. Assess the impact of executive dysfunction on NIV compliance.
4. Evaluate the effect of hypoventilation on executive dysfunction.
5. Compare techniques for clearing upper airway secretions at various stages of respiratory and bulbar dysfunction.
6. Evaluate pulmonary tests, compliance with NIV, and outcomes in patients with bulbar dysfunction.

* C = Possibly effective, ineffective or harmful (or possibly useful/predictive or not useful/predictive) for the given condition in the specified population. (Level C rating requires at least one Class II study or two consistent Class III studies.)
U = Data inadequate or conflicting: given current knowledge, treatment (test, predictor) is unproven.

American Academy of Neurology (AAN) Consensus-based care recommendations for adults with myotonic dystrophy type 1: The AAN care recommendations (Ashizawa, et al 2018) note the following:

- Under section Life threatening symptoms—Clinical care recommendations
 - Vaccinate for pneumonia and flu; treat respiratory infections quickly and use cough assistance and mechanical ventilation as needed along with obtaining consultations from respiratory therapy and pulmonary medicine groups.
 - Some patients will eventually require either nighttime ventilator support or full-time ventilation. Most patients with chronic respiratory insufficiency respond to noninvasive ventilatory support (NIV). Patients experiencing acute respiratory failure require endotracheal intubation with positive pressure ventilation.
 - For chronic respiratory insufficiency, use supplemental oxygen with caution and in conjunction with NIV (see Surgery, anesthesia, and pain).
 - If surgery is planned, reassess clearance capacity if needed, possible adaptation to NIV or cough assistance.

- Under section re Excessive daytime sleepiness (EDS) symptoms:
- If nocturnal or daytime hypoventilation is suspected, consider noninvasive positive pressure ventilation, and refer to a pulmonologist with experience in neuromuscular diseases re: possible need for NIV launching.

- Under Pregnancy / Obstetrical management:
 - Include a pediatric or neonatal specialist present at delivery; intensive neonatal care is recommended for neonates that may have DM1; anticipate need for feeding tube and ventilator support (recommended even if the fetus is known to be unaffected).

The American Board of Internal Medicine’s (ABIM) Foundation Choosing Wisely® Initiative
No specific relevant information.

Use Outside of the US
The German National Guideline for Treating Chronic Respiratory Failure with Invasive and Non-Invasive Ventilation (Windisch, et al., 2018) notes that invasive and non-invasive home mechanical ventilation have become a well-established treatment option. Consequently, new chapters have been added to the guideline.

Non-Invasive Ventilation Recommendations
- Home access to non-invasive ventilation must be granted after considering the technical advantages and disadvantages, the individual patient tolerance levels, and the results of clinical testing.
- Commercial masks are usually sufficient. Customized masks must only be used under exceptional circumstances such as in neuromuscular disease patients, with high ventilation pressures or long ventilation times, or in patients with sensitive skin.
- Every patient should have a spare mask.
- Hybrid or special ventilation modes such as mandatory target volume cannot be recommended on a general basis.
- A second ventilation machine and an external battery are necessary for ventilation times ≥16 h/24 h.

Invasive Ventilation Recommendations
- The tracheostoma should be surgically created; proof of stability is absolutely necessary for percutaneous dilational tracheostomata.
- A second ventilation machine and an external battery are essential for ventilation times ≥16 h/24 h.
- A pulse oximeter is necessary for selective measurements and possibly for continuous measurements in certain disease groups (i.e., spinal cord transection, paediatrics).
- A small-diameter spare cannula must be made available.
- For application of speaking valves, a cuffless cannula, a completely unblocked cannula, or a fenestrated cannula must be used.
- Conditioning (humidification and moistening) of the ventilation air is mandatory.
- Two aspirator devices are necessary.

Obstructive Airway disease Recommendations
- Non-invasive ventilation is the primary therapeutic option for home mechanical ventilation of chronic obstructive pulmonary disease patients with chronic respiratory failure.
- Home non-invasive ventilation must be initiated when the patient presents with chronic hypercapnia in combination with the typical symptoms of respiratory failure.
- Home non-invasive ventilation must be initiated when hypercapnia persists for more than 2 weeks after completing acute ventilation therapy for acute respiratory acidosis.
- The aim of the ventilation therapy is to normalise PaCO2; this may require sufficiently high ventilation intensity with effective ventilation pressures as well as the use of controlled ventilation modes.

Thoracic-Restrictive Lung Diseases Recommendations
- Non-invasive ventilation is the primary therapeutic option for home mechanical ventilation of thoracic-restrictive disease patients with chronic respiratory failure. The most important criteria for beginning long-term non-invasive ventilation are hypercapnia in combination with both the typical symptoms of chronic respiratory failure and the reduction in quality of life.
• For symptoms of hypoventilation in the absence of hypercapnia, a sleep study should take place.
• Patients with severe restrictive ventilatory dysfunction but without manifest hypercapnia must be closely monitored.

Obesity Hypoventilation Syndrome Recommendations
• Continuous positive airway pressure or non-invasive ventilation are the primary treatment options for home mechanical ventilation in patients with obesity hypoventilation syndrome.
• A primary attempt at continuous positive airway pressure therapy must take place under poly(somno)graphic evaluation. Primary non-invasive ventilation can be indicated in the presence of significant comorbidities or severe hypercapnia.
• A switch to non-invasive ventilation is indicated in the following cases: continuous positive airway pressure intolerance, persistent sleep-related or aggravated hypoventilation, and/or persistent sleep-related respiratory dysfunction despite continuous positive airway pressure use.
• Concomitant weight loss should be aimed for.
• A therapeutic switch from non-invasive ventilation to continuous positive airway pressure should be considered under stable conditions, particularly after weight reduction; if applicable, omission of mechanical ventilation can be considered.
• If obesity hypoventilation syndrome is clinically suspected, appropriate diagnostic tests for obesity hypoventilation syndrome should take place before undergoing general anaesthetics.

Neuromuscular Diseases Recommendations
• Clinical assessment and determination of forced vital capacity in neuromuscular disease patients should take place at 3- to 12-month intervals. A forced vital capacity < 70% is an indicator for poly(somno)graphy and PtCO2 measurement.
• In the event of mild hypercapnia (PaCO2 ≥45 mm Hg or diurnal normocapnia with a nocturnal rise in PtCO2 of ≥10 mm Hg), non-invasive ventilation should be implemented as the primary therapy option for home mechanical ventilation in neuromuscular disease patients with chronic respiratory failure, if diurnal symptoms persist.
• There is no indication for prophylactic implementation of non-invasive ventilation in the absence of chronic respiratory failure.
• The measurement of coughing capacity is obligatory in neuromuscular disease patients. The presence of weak cough (peak cough flow < 270 L/min) is an indication for the introduction of secretion management.

Secretion Management Recommendations
• In neuromuscular disease patients with impaired cough and invasive ventilation, secretion management is obligatory and must be carried out regularly and adapted to the underlying disease.
• The indication for a mechanical In-Exsufflator device must be established by a physician with ventilation competency, who also then takes over the responsibility for the patient’s therapy.
• Adaptation of the mechanical In-Exsufflator to the patient can be performed by a respiratory therapist.
• Switching between different types of mechanical In-Exsufflators that are not structurally identical may not be carried out without renewed testing of the effectiveness and patient compatibility of the devices; this is because the performance of each device may differ significantly.
• Secretion management in chronic obstructive pulmonary disease patients with high secretion load must include measures for secretolysis (medicinal/non-medicinal) and measures to ease coughing such as special coughing techniques (huffing) and positive expiratory pressure systems.
• Mechanical In-Exsufflators should not be used in chronic obstructive pulmonary disease patients.
• Suctioning in invasively ventilated patients must take place strictly via endotracheal placement of the suctioning catheter (max. 1 cm beyond the cannula), independent of the underlying condition.

Spinal Cord Transection Recommendations
• Permanent pulse oximetry monitoring is necessary in partly and fully dependent mechanically ventilated patients with spinal cord transection.
• Capnographic monitoring of patients with spinal cord transection injuries is indicated in many situations in the home mechanical ventilation setting.
Special Features of Pediatric Ventilation

- Due to their difference from adults, the care and ventilation of children with chronic respiratory failure must be carried out by a multidisciplinary team.
- Safe and successful home mechanical ventilation therapy must take into account the family and home environment of the patient and be accompanied by offers of medical, nursing, and psychosocial support.
- Continuous monitoring of oxygen saturation (at the least), and PCO2 (if necessary) must be carried out in children who are dependent on mechanical ventilation for survival.
- The development of paediatric competence centres that initiate home mechanical ventilation should be aimed at for better care of long-term-ventilated children (Windisch, et al., 2018).

The Canadian Thoracic Society Clinical Practice Guideline on Home Mechanical Ventilation (McKim, et al., 2011) notes that guideline applies to all adult individuals who are at risk for or are using HMV. Individuals with amyotrophic lateral sclerosis (ALS), central hypoventilation syndrome (CHS), chronic obstructive pulmonary disease (COPD), kyphoscoliosis, obesity hypoventilation syndrome (OHS), spinal cord injury (SCI), Duchenne muscular dystrophy (DMD), muscular dystrophies (MDs) other than DMD, myopathies and myotonic dystrophy (Steinert's muscular dystrophy [SMD]) are of special interest and are considered individually in the present clinical practice guideline.

Medicare Coverage Determinations

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Determination Name/Number</th>
<th>Revision Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCD</td>
<td>National 280.1 Durable Medical Equipment (280.1)</td>
<td>05/05/2005</td>
</tr>
<tr>
<td>LCD</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Note: Please review the current Medicare Policy for the most up-to-date information.

Coding/Billing Information

Note:
1) This list of codes may not be all-inclusive.
2) Deleted codes and codes which are not effective at the time the service is rendered may not be eligible for reimbursement.

Considered Medically Necessary when criteria in the applicable policy statements listed above are met:

<table>
<thead>
<tr>
<th>HCPCS Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0465</td>
<td>Home ventilator, any type, used with invasive interface, (e.g., tracheostomy tube)</td>
</tr>
<tr>
<td>E0466</td>
<td>Home ventilator, any type, used with non-invasive interface, (e.g., mask, chest shell)</td>
</tr>
<tr>
<td>E0467</td>
<td>Home ventilator, multi-function respiratory device, also performs any or all of the additional functions of oxygen concentration, drug nebulization, aspiration, and cough stimulation, includes all accessories, components and supplies for all functions</td>
</tr>
</tbody>
</table>

References

“Cigna Companies” refers to operating subsidiaries of Cigna Corporation. All products and services are provided exclusively by or through such operating subsidiaries, including Cigna Health and Life Insurance Company, Connecticut General Life Insurance Company, Cigna Behavioral Health, Inc., Cigna Health Management, Inc., QualCare, Inc., and HMO or service company subsidiaries of Cigna Health Corporation. The Cigna name, logo, and other Cigna marks are owned by Cigna Intellectual Property, Inc. © 2021 Cigna.